dbo:abstract
|
- In physics, the Clebsch–Gordan (CG) coefficients are numbers that arise in angular momentum coupling in quantum mechanics. They appear as the expansion coefficients of total angular momentum eigenstates in an uncoupled tensor product basis. In more mathematical terms, the CG coefficients are used in representation theory, particularly of compact Lie groups, to perform the explicit direct sum decomposition of the tensor product of two irreducible representations (i.e., a reducible representation into irreducible representations, in cases where the numbers and types of irreducible components are already known abstractly). The name derives from the German mathematicians Alfred Clebsch and Paul Gordan, who encountered an equivalent problem in invariant theory. From a vector calculus perspective, the CG coefficients associated with the SO(3) group can be defined simply in terms of integrals of products of spherical harmonics and their complex conjugates. The addition of spins in quantum-mechanical terms can be read directly from this approach as spherical harmonics are eigenfunctions of total angular momentum and projection thereof onto an axis, and the integrals correspond to the Hilbert space inner product. From the formal definition of angular momentum, recursion relations for the Clebsch–Gordan coefficients can be found. There also exist complicated explicit formulas for their direct calculation. The formulas below use Dirac's bra–ket notation and the Condon–Shortley phase convention is adopted. (en)
- Die Clebsch-Gordan-Koeffizienten finden ihre Verwendung in der Kopplung quantenmechanischer Drehimpulse. Es handelt sich dabei um Entwicklungskoeffizienten, mit denen man aus der Basis der Einzeldrehimpulse in die Basis des Gesamtdrehimpulses übergeht. Sie werden zur Berechnung der Spin-Bahn-Kopplung sowie im Isospin-Formalismus verwendet. Sie wurden nach Alfred Clebsch (1833–1872) und Paul Gordan (1837–1912) benannt. Statt Clebsch-Gordan-Koeffizienten kann man auch nach Eugene Wigner die damit verwandten 3j-Symbole verwenden. (de)
- En física, los coeficientes de Clebsch-Gordan o coeficientes CG son el conjunto de números que aparecen al acoplar momentos angulares en mecánica cuántica. El nombre deriva de los matemáticos alemanes Alfred Clebsch (1833-1872) y Paul Gordan (1837-1912), que resolvieron un problema equivalente en la teoría de invariantes. En términos matemáticos, los coeficientes de CG se utilizan en teoría de grupos, en particular en los grupos de Lie para calcular un producto tensorial de representaciones irreducibles como suma directa de la descomposión del mismo en las distintas representaciones irreducibles. La física emplea esta peculiaridad para descomponer un determinado estado con una determinada base del espacio de Hilbert y una determinada representación en una suma de estados en otra representación que pueda ser más útil, especialmente en el caso de estados en una determinada representación irreducible de SO(3) de rotaciones. En el artículo se utiliza la notación de Dirac. (es)
- En physique, les coefficients de Clebsch-Gordan sont des nombres qui apparaissent lors de l'étude des couplages de moment angulaire soumis aux lois de la mécanique quantique. Ils portent le nom des mathématiciens allemands Alfred Clebsch (1833-1872) et Paul Gordan (1837-1912), qui rencontrèrent un problème similaire en théorie des invariants. En théorie des représentations, notamment des groupes de Lie compacts, ces coefficients sont utilisés pour effectuer la décomposition en somme directe du produit tensoriel de deux représentations irréductibles. On peut définir les coefficients de Clebsch-Gordan associés au groupe SO(3) d'une manière plus directe, comme produit d'harmoniques sphériques. L'addition de spins en mécanique quantique se comprend par cette approche. Dans cet article, on utilisera la notation bra-ket de Dirac. (fr)
- 量子力学においてクレブシュ–ゴルダン係数(CG係数、英: Clebsch–Gordan coefficients)またはウィグナー係数は、角運動量の合成で生じる係数の組である。2つの角運動量の和によって出来た角運動量の固有状態を得るために必要となる。 より数学的にはCG係数は表現論、特にコンパクトリー群において、既約表現の数とタイプが抽象的に分かっており、既約表現のテンソル積を既約表現に直和分解する場合に使われる。で同様の問題について研究したドイツの物理学者(1833–1872)と(1837–1912)にちなんで命名された。 古典力学では、CG係数やSO(3)群に関連するものは球面調和関数の乗算によってもっと直接的に定義される。量子力学的なスピンの導入はこのアプローチから行える。 クレブシュ–ゴルダン係数は全角運動量固有状態を結合していないテンソル積基底で展開したときの展開係数である。この定義の意味は角運動量演算子、角運動量固有状態、角運動量固有状態のテンソル積を定義することで明らかとなる。 角運動量の形式的な定義から、クレブシュ–ゴルダン係数における漸化式がわかる。係数の具体的な数値を定めるためには、位相則を選びださなければならない。 以下の定式化ではディラックのブラケット記法を使う。また位相則としてを用いる。 (ja)
- 군 표현론과 양자역학에서 클렙슈-고르단 계수(Clebsch-Gordan coefficient)는 두 표현의 텐서곱을 기약 표현의 직합으로 나타낼 때 사용되는 계수다. 독일의 수학자인 알프레트 클렙슈(Rudolf Friedrich Alfred Clebsch)와 (Paul Albert Gordan)의 이름을 땄다. (ko)
- I coefficienti di Clebsch-Gordan in meccanica quantistica come in fisica atomica e fisica della materia condensata sono utilizzati per passare da una base all'altra nella composizione di momenti angolari. (it)
- In de natuurkunde zijn de Clebsch-Gordan-coëfficienten, of CG-coëfficiënten, verzamelingen van getallen, die onder de wetten van de kwantummechanica tevoorschijn komen bij het koppelen van twee impulsmomenten. CG-coëfficienten worden in de representatietheorie gebruikt, vooral met compacte Lie-groepen. De CG-coëfficienten geven de expliciete directe som decompositie van het tensorproduct van twee (irreps) van de rotatiegroep in gevallen, waarin de getallen en typen onherleidbare representaties op abstract niveau al bekend zijn. De CG-coëfficienten danken hun naam aan de Duitse wiskundigen Alfred Clebsch (1833-1872) en Paul Gordan (1837-1912) die in de negentiende eeuw met een soortgelijk probleem in de invariantentheorie werden geconfronteerd. In termen van de klassieke wiskunde kunnen CG-coëfficiënten, of althans degenen, die gekoppeld zijn aan de groep SO(3), directer worden gedefinieerd door middel van formules voor het vermenigvuldigen van sferische harmonischen. De toevoeging van spins in kwantummechanische termen kan rechtstreeks worden afgelezen uit deze aanpak. De onderstaande formules maken gebruik van de bra-ketnotatie van de Britse natuurkundige Paul Dirac. Er zijn tabellen met de numerieke waarden van de Clebsch-Gordan-coëfficienten. (nl)
- Коэффициенты Клебша — Гордана находят применение при описании взаимодействия квантовомеханических моментов импульса. Они представляют собой коэффициенты разложения собственных функций суммарного момента импульса по базису собственных функций суммируемых моментов импульса. Коэффициенты Клебша — Гордана применяются при вычислении спин-орбитального взаимодействия, а также в формализме изоспина. Коэффициенты Клебша — Гордана названы в честь Альфреда Клебша (1833—1872) и Пауля Альберта Гордана (1837—1912). (ru)
- Współczynniki Clebscha-Gordana – współczynniki liczbowe pojawiające się w rozkładzie stanów kwantowych, będących stanami własnymi operatorów momentu pędu, spinu bądź izospinu. Wartości współczynników Clebscha-Gordana są stabelaryzowane. Współczynniki te zostały wprowadzone przez niemieckich matematyków Alfreda Clebscha i Pawła Gordana, w związku z rozwojem teorii niezmienników. (pl)
- Коефіцієнти Клебша — Ґордана — набір чисел, що виникають у квантовій механіці при описі взаємодії кутових моментів, і позначаються або . З математичної точки зору, коефіцієнти Клебша — Ґордана виникають у теорії представлень (зокрема ) при розкладі тензорного добутку двох незвідних представлень у пряму суму незвідних представлень, якщо відомі їх кількість та форма. Коефіцієнти названі на честь німецьких математиків Альфреда Клебша (1833–1872) та (1837–1912), які розв'язали аналогічну задачу в теорії інваріантів. (uk)
- 在量子力学中,克莱布希-高登系数(Clebsch–Gordan coefficients,简称 CG 系数,又称向量耦合系数等)是两个角动量耦合时,它们的本征函数的组合系数。 从数学的角度,克莱布希-高登系数出现在紧李群的表示论中,它研究的是两个不可约表示的张量积如何分解成不可约表示的直和。 克莱布希-高登系数因阿尔弗雷德·克莱布什和保罗·哥尔丹而得名。 (zh)
|
dbo:wikiPageExternalLink
| |
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 34683 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
dbp:bgcolor
| |
dbp:borderColour
| |
dbp:cellpadding
| |
dbp:indent
| |
dbp:wikiPageUsesTemplate
| |
dcterms:subject
| |
gold:hypernym
| |
rdf:type
| |
rdfs:comment
|
- Die Clebsch-Gordan-Koeffizienten finden ihre Verwendung in der Kopplung quantenmechanischer Drehimpulse. Es handelt sich dabei um Entwicklungskoeffizienten, mit denen man aus der Basis der Einzeldrehimpulse in die Basis des Gesamtdrehimpulses übergeht. Sie werden zur Berechnung der Spin-Bahn-Kopplung sowie im Isospin-Formalismus verwendet. Sie wurden nach Alfred Clebsch (1833–1872) und Paul Gordan (1837–1912) benannt. Statt Clebsch-Gordan-Koeffizienten kann man auch nach Eugene Wigner die damit verwandten 3j-Symbole verwenden. (de)
- 量子力学においてクレブシュ–ゴルダン係数(CG係数、英: Clebsch–Gordan coefficients)またはウィグナー係数は、角運動量の合成で生じる係数の組である。2つの角運動量の和によって出来た角運動量の固有状態を得るために必要となる。 より数学的にはCG係数は表現論、特にコンパクトリー群において、既約表現の数とタイプが抽象的に分かっており、既約表現のテンソル積を既約表現に直和分解する場合に使われる。で同様の問題について研究したドイツの物理学者(1833–1872)と(1837–1912)にちなんで命名された。 古典力学では、CG係数やSO(3)群に関連するものは球面調和関数の乗算によってもっと直接的に定義される。量子力学的なスピンの導入はこのアプローチから行える。 クレブシュ–ゴルダン係数は全角運動量固有状態を結合していないテンソル積基底で展開したときの展開係数である。この定義の意味は角運動量演算子、角運動量固有状態、角運動量固有状態のテンソル積を定義することで明らかとなる。 角運動量の形式的な定義から、クレブシュ–ゴルダン係数における漸化式がわかる。係数の具体的な数値を定めるためには、位相則を選びださなければならない。 以下の定式化ではディラックのブラケット記法を使う。また位相則としてを用いる。 (ja)
- 군 표현론과 양자역학에서 클렙슈-고르단 계수(Clebsch-Gordan coefficient)는 두 표현의 텐서곱을 기약 표현의 직합으로 나타낼 때 사용되는 계수다. 독일의 수학자인 알프레트 클렙슈(Rudolf Friedrich Alfred Clebsch)와 (Paul Albert Gordan)의 이름을 땄다. (ko)
- I coefficienti di Clebsch-Gordan in meccanica quantistica come in fisica atomica e fisica della materia condensata sono utilizzati per passare da una base all'altra nella composizione di momenti angolari. (it)
- Коэффициенты Клебша — Гордана находят применение при описании взаимодействия квантовомеханических моментов импульса. Они представляют собой коэффициенты разложения собственных функций суммарного момента импульса по базису собственных функций суммируемых моментов импульса. Коэффициенты Клебша — Гордана применяются при вычислении спин-орбитального взаимодействия, а также в формализме изоспина. Коэффициенты Клебша — Гордана названы в честь Альфреда Клебша (1833—1872) и Пауля Альберта Гордана (1837—1912). (ru)
- Współczynniki Clebscha-Gordana – współczynniki liczbowe pojawiające się w rozkładzie stanów kwantowych, będących stanami własnymi operatorów momentu pędu, spinu bądź izospinu. Wartości współczynników Clebscha-Gordana są stabelaryzowane. Współczynniki te zostały wprowadzone przez niemieckich matematyków Alfreda Clebscha i Pawła Gordana, w związku z rozwojem teorii niezmienników. (pl)
- Коефіцієнти Клебша — Ґордана — набір чисел, що виникають у квантовій механіці при описі взаємодії кутових моментів, і позначаються або . З математичної точки зору, коефіцієнти Клебша — Ґордана виникають у теорії представлень (зокрема ) при розкладі тензорного добутку двох незвідних представлень у пряму суму незвідних представлень, якщо відомі їх кількість та форма. Коефіцієнти названі на честь німецьких математиків Альфреда Клебша (1833–1872) та (1837–1912), які розв'язали аналогічну задачу в теорії інваріантів. (uk)
- 在量子力学中,克莱布希-高登系数(Clebsch–Gordan coefficients,简称 CG 系数,又称向量耦合系数等)是两个角动量耦合时,它们的本征函数的组合系数。 从数学的角度,克莱布希-高登系数出现在紧李群的表示论中,它研究的是两个不可约表示的张量积如何分解成不可约表示的直和。 克莱布希-高登系数因阿尔弗雷德·克莱布什和保罗·哥尔丹而得名。 (zh)
- In physics, the Clebsch–Gordan (CG) coefficients are numbers that arise in angular momentum coupling in quantum mechanics. They appear as the expansion coefficients of total angular momentum eigenstates in an uncoupled tensor product basis. In more mathematical terms, the CG coefficients are used in representation theory, particularly of compact Lie groups, to perform the explicit direct sum decomposition of the tensor product of two irreducible representations (i.e., a reducible representation into irreducible representations, in cases where the numbers and types of irreducible components are already known abstractly). The name derives from the German mathematicians Alfred Clebsch and Paul Gordan, who encountered an equivalent problem in invariant theory. (en)
- En física, los coeficientes de Clebsch-Gordan o coeficientes CG son el conjunto de números que aparecen al acoplar momentos angulares en mecánica cuántica. El nombre deriva de los matemáticos alemanes Alfred Clebsch (1833-1872) y Paul Gordan (1837-1912), que resolvieron un problema equivalente en la teoría de invariantes. (es)
- En physique, les coefficients de Clebsch-Gordan sont des nombres qui apparaissent lors de l'étude des couplages de moment angulaire soumis aux lois de la mécanique quantique. Ils portent le nom des mathématiciens allemands Alfred Clebsch (1833-1872) et Paul Gordan (1837-1912), qui rencontrèrent un problème similaire en théorie des invariants. En théorie des représentations, notamment des groupes de Lie compacts, ces coefficients sont utilisés pour effectuer la décomposition en somme directe du produit tensoriel de deux représentations irréductibles. (fr)
- In de natuurkunde zijn de Clebsch-Gordan-coëfficienten, of CG-coëfficiënten, verzamelingen van getallen, die onder de wetten van de kwantummechanica tevoorschijn komen bij het koppelen van twee impulsmomenten. Er zijn tabellen met de numerieke waarden van de Clebsch-Gordan-coëfficienten. (nl)
|
rdfs:label
|
- Clebsch-Gordan-Koeffizient (de)
- Coeficientes Clebsch—Gordan (es)
- Clebsch–Gordan coefficients (en)
- Coefficient de Clebsch-Gordan (fr)
- Coefficienti di Clebsch-Gordan (it)
- 클렙슈-고르단 계수 (ko)
- Clebsch-Gordan-coëfficienten (nl)
- クレブシュ–ゴルダン係数 (ja)
- Współczynniki Clebscha-Gordana (pl)
- Коэффициенты Клебша — Гордана (ru)
- Коефіцієнти Клебша — Ґордана (uk)
- 克莱布希-高登系数 (zh)
|
rdfs:seeAlso
| |
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is dbo:knownFor
of | |
is dbo:wikiPageRedirects
of | |
is dbo:wikiPageWikiLink
of | |
is dbp:knownFor
of | |
is foaf:primaryTopic
of | |