This HTML5 document contains 102 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
dbpedia-cahttp://ca.dbpedia.org/resource/
n16https://global.dbpedia.org/id/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
dbpedia-ithttp://it.dbpedia.org/resource/
n14http://algo.inria.fr/flajolet/Publications/
dbpedia-frhttp://fr.dbpedia.org/resource/
wikipedia-enhttp://en.wikipedia.org/wiki/
dbphttp://dbpedia.org/property/
dbchttp://dbpedia.org/resource/Category:
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Ptolemaic_graph
dbo:wikiPageWikiLink
dbr:Symbolic_method_(combinatorics)
Subject Item
dbr:Analytic_Combinatorics
dbo:wikiPageWikiLink
dbr:Symbolic_method_(combinatorics)
Subject Item
dbr:Analytic_combinatorics
dbo:wikiPageWikiLink
dbr:Symbolic_method_(combinatorics)
dbo:wikiPageRedirects
dbr:Symbolic_method_(combinatorics)
Subject Item
dbr:Fundamental_Theorem_of_Combinatorial_Enumeration
dbo:wikiPageWikiLink
dbr:Symbolic_method_(combinatorics)
dbo:wikiPageRedirects
dbr:Symbolic_method_(combinatorics)
Subject Item
dbr:Fundamental_theorem_of_combinatorial_enumeration
dbo:wikiPageWikiLink
dbr:Symbolic_method_(combinatorics)
dbo:wikiPageRedirects
dbr:Symbolic_method_(combinatorics)
Subject Item
dbr:Fibonacci_number
dbo:wikiPageWikiLink
dbr:Symbolic_method_(combinatorics)
Subject Item
dbr:Flajolet-Sedgewick_fundamental_theorem
dbo:wikiPageWikiLink
dbr:Symbolic_method_(combinatorics)
dbo:wikiPageRedirects
dbr:Symbolic_method_(combinatorics)
Subject Item
dbr:Symbolic_method_(combinatorics)
rdfs:label
Combinatoria analitica Combinatòria analítica Combinatoire analytique Symbolic method (combinatorics)
rdfs:comment
La combinatoria analitica può definirsi come il settore della combinatoria che affronta i problemi delle configurazioni discrete mediante le tecniche ed il linguaggio delle serie generatrici; in particolare si utilizzano acquisizioni dell'analisi complessa per ottenere dei risultati sul comportamento asintotico delle cardinalità di configurazioni combinatorie. Molti risultati della combinatoria analitica forniscono strumenti efficaci per lo studio della complessità di vari algoritmi. En mathématiques, et plus précisément en combinatoire, la combinatoire analytique (en anglais : analytic combinatorics) est un ensemble de techniques décrivant des problèmes combinatoires dans le langage des séries génératrices, et s'appuyant en particulier sur l'analyse complexe pour obtenir des résultats asymptotiques sur les objets combinatoires initiaux. Les résultats de combinatoire analytique permettent notamment une analyse fine de la complexité de certains algorithmes. In combinatorics, the symbolic method is a technique for counting combinatorial objects. It uses the internal structure of the objects to derive formulas for their generating functions. The method is mostly associated with Philippe Flajolet and is detailed in Part A of his book with Robert Sedgewick, Analytic Combinatorics, while the rest of the book explains how to use complex analysis in order to get asymptotic and probabilistic results on the corresponding generating functions. La Combinatòria analítica és una branca de la combinatòria que descriu fent servir funcions generadores, les de les quals sovint corresponen a funcions analítiques. Donada una funció generadora, la combinatòria analítica intenta descriure el d'una successió de fent servir tècniques algebraiques. Això sovint implica l'anàlisi de les singularitats de la funció analítica associada. Dos tipus de funcions generadores s'utilitzen comunament — i . Una tècnica important per obtenir funcions generadores és la .
dcterms:subject
dbc:Combinatorics
dbo:wikiPageID
986932
dbo:wikiPageRevisionID
1059232078
dbo:wikiPageWikiLink
dbr:Philippe_Flajolet dbr:Stirling_numbers_and_exponential_generating_functions_in_symbolic_combinatorics dbr:Stirling_numbers_of_the_second_kind dbr:Recursion dbr:Disjoint_union dbr:Pólya_enumeration_theorem dbr:Ernst_Schröder_(mathematician) dbr:Donald_Knuth dbr:Leonhard_Euler dbr:Enumerative_combinatorics dbc:Combinatorics dbr:Random_permutation_statistics dbr:Algebra dbr:Graph_(discrete_mathematics) dbr:Daniel_Bernoulli dbr:Multiset dbr:Cycle_index dbr:Set_(mathematics) dbr:Cartesian_product dbr:Random_generation dbr:Srinivasa_Ramanujan dbr:Analytic_Combinatorics dbr:Generating_function dbr:Set_theory dbr:André_Joyal dbr:Combinatorial_species dbr:Combinatorics dbr:Asymptotic_distribution dbr:Integer_partition dbr:Computer_algebra dbr:Stirling_numbers_of_the_first_kind dbr:Tree_(graph) dbr:Combinatorial_class dbr:Embedding dbr:Euler_totient_function dbr:Sequence dbr:Dominique_Foata dbr:Labelled_enumeration_theorem dbr:Arthur_Cayley dbr:George_Pólya dbr:Union_(set_theory) dbr:Umbral_calculus dbr:Marcel-Paul_Schützenberger dbr:Recurrence_relation dbr:Robert_Sedgewick_(computer_scientist) dbr:Ordinary_generating_function dbr:John_Riordan_(mathematician) dbr:Exponential_generating_function
dbo:wikiPageExternalLink
n14:book.pdf)
owl:sameAs
dbpedia-ca:Combinatòria_analítica dbpedia-fr:Combinatoire_analytique n16:2mW3x dbpedia-it:Combinatoria_analitica wikidata:Q2985062
dbp:wikiPageUsesTemplate
dbt:Sub dbt:Math dbt:Ill dbt:Mathcal dbt:Nobold dbt:Reflist dbt:About
dbo:abstract
En mathématiques, et plus précisément en combinatoire, la combinatoire analytique (en anglais : analytic combinatorics) est un ensemble de techniques décrivant des problèmes combinatoires dans le langage des séries génératrices, et s'appuyant en particulier sur l'analyse complexe pour obtenir des résultats asymptotiques sur les objets combinatoires initiaux. Les résultats de combinatoire analytique permettent notamment une analyse fine de la complexité de certains algorithmes. La Combinatòria analítica és una branca de la combinatòria que descriu fent servir funcions generadores, les de les quals sovint corresponen a funcions analítiques. Donada una funció generadora, la combinatòria analítica intenta descriure el d'una successió de fent servir tècniques algebraiques. Això sovint implica l'anàlisi de les singularitats de la funció analítica associada. Dos tipus de funcions generadores s'utilitzen comunament — i . Una tècnica important per obtenir funcions generadores és la . In combinatorics, the symbolic method is a technique for counting combinatorial objects. It uses the internal structure of the objects to derive formulas for their generating functions. The method is mostly associated with Philippe Flajolet and is detailed in Part A of his book with Robert Sedgewick, Analytic Combinatorics, while the rest of the book explains how to use complex analysis in order to get asymptotic and probabilistic results on the corresponding generating functions. During two centuries, generating functions were popping up via the corresponding recurrences on their coefficients (as can be seen in the seminal works of Bernoulli, Euler, Arthur Cayley, Schröder, Ramanujan, Riordan, Knuth, , etc.).It was then slowly realized that the generating functions were capturing many other facets of the initial discrete combinatorial objects, and that this could be done in a more direct formal way: The recursive nature of some combinatorial structures translates, via some isomorphisms, into noteworthy identities on the corresponding generating functions. Following the works of Pólya, further advances were thus done in this spirit in the 1970s with generic uses of languages for specifying combinatorial classes and their generating functions, as found in works by Foata and Schützenberger on permutations, Bender and Goldman on prefabs, and Joyal on combinatorial species. Note that this symbolic method in enumeration is unrelated to "Blissard's symbolic method", which is just another old name for umbral calculus. The symbolic method in combinatorics constitutes the first step of many analyses of combinatorial structures, which can then lead to fast computation schemes, to asymptotic properties and limit laws, to random generation, all of them being suitable to automatization via computer algebra. La combinatoria analitica può definirsi come il settore della combinatoria che affronta i problemi delle configurazioni discrete mediante le tecniche ed il linguaggio delle serie generatrici; in particolare si utilizzano acquisizioni dell'analisi complessa per ottenere dei risultati sul comportamento asintotico delle cardinalità di configurazioni combinatorie. Molti risultati della combinatoria analitica forniscono strumenti efficaci per lo studio della complessità di vari algoritmi.
prov:wasDerivedFrom
wikipedia-en:Symbolic_method_(combinatorics)?oldid=1059232078&ns=0
dbo:wikiPageLength
28730
foaf:isPrimaryTopicOf
wikipedia-en:Symbolic_method_(combinatorics)
Subject Item
dbr:Boltzmann_sampler
dbo:wikiPageWikiLink
dbr:Symbolic_method_(combinatorics)
Subject Item
dbr:Asymptotic_combinatorics
dbo:wikiPageWikiLink
dbr:Symbolic_method_(combinatorics)
dbo:wikiPageRedirects
dbr:Symbolic_method_(combinatorics)
Subject Item
dbr:Flajolet–Sedgewick_fundamental_theorem
dbo:wikiPageWikiLink
dbr:Symbolic_method_(combinatorics)
dbo:wikiPageRedirects
dbr:Symbolic_method_(combinatorics)
Subject Item
dbr:Symbolic_combinatorics
dbo:wikiPageWikiLink
dbr:Symbolic_method_(combinatorics)
dbo:wikiPageRedirects
dbr:Symbolic_method_(combinatorics)
Subject Item
dbr:Constructible_combinatorial_class
dbo:wikiPageWikiLink
dbr:Symbolic_method_(combinatorics)
dbo:wikiPageRedirects
dbr:Symbolic_method_(combinatorics)
Subject Item
dbr:Specifiable_combinatorial_class
dbo:wikiPageWikiLink
dbr:Symbolic_method_(combinatorics)
dbo:wikiPageRedirects
dbr:Symbolic_method_(combinatorics)
Subject Item
wikipedia-en:Symbolic_method_(combinatorics)
foaf:primaryTopic
dbr:Symbolic_method_(combinatorics)