This HTML5 document contains 106 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dcthttp://purl.org/dc/terms/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n4http://dbpedia.org/resource/File:
n10https://books.google.com/
n17https://global.dbpedia.org/id/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
n9https://www.researchgate.net/profile/Michael_Kotsovos/publication/248122582_Toward_a_Consistent_Design_of_Structural_Concrete/links/59cc94c80f7e9bbfdc3f7515/
n13https://www.amazon.co.uk/dp/
n6http://commons.wikimedia.org/wiki/Special:FilePath/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
wikipedia-enhttp://en.wikipedia.org/wiki/
dbphttp://dbpedia.org/property/
provhttp://www.w3.org/ns/prov#
dbchttp://dbpedia.org/resource/Category:
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Signature_Tower_Jakarta
dbo:wikiPageWikiLink
dbr:Structural_engineering_theory
Subject Item
dbr:Glossary_of_structural_engineering
dbo:wikiPageWikiLink
dbr:Structural_engineering_theory
Subject Item
dbr:Structural_analysis
dbo:wikiPageWikiLink
dbr:Structural_engineering_theory
Subject Item
dbr:Academa
dbo:wikiPageWikiLink
dbr:Structural_engineering_theory
Subject Item
dbr:Structural_engineering_theory
rdf:type
owl:Thing
rdfs:label
Structural engineering theory
rdfs:comment
Structural engineering depends upon a detailed knowledge of loads, physics and materials to understand and predict how structures support and resist self-weight and imposed loads. To apply the knowledge successfully structural engineers will need a detailed knowledge of mathematics and of relevant empirical and theoretical design codes. They will also need to know about the corrosion resistance of the materials and structures, especially when those structures are exposed to the external environment.
rdfs:seeAlso
dbr:Flexibility_method dbr:Tensile_strength dbr:Hooke's_Law
foaf:depiction
n6:Bolt-in-shear.png n6:Tresca_stress_2D.png n6:Buckled_column.svg n6:Deflection.svg
dct:subject
dbc:Structural_engineering
dbo:wikiPageID
22615327
dbo:wikiPageRevisionID
1024238255
dbo:wikiPageWikiLink
dbr:Natural_frequency n4:Tresca_stress_2D.png dbr:Dynamic_response dbr:Stiffness dbr:Stress_(mechanics) dbr:Strut dbr:Yield_surface dbr:Shear_force dbr:Modulus_of_elasticity dbr:Physics dbr:Metre dbr:Elastic_modulus dbr:Structural_reliability dbr:Radius_of_gyration dbr:Deflection_(engineering) dbr:Flexural_rigidity dbr:Area_moment_of_inertia dbr:Flexure dbr:Flexibility_(engineering) dbr:Strength_of_materials n4:Buckled_column.svg dbr:Centroid dbr:Mechanical_equilibrium dbr:Continuum_mechanics dbr:Moment_(physics) dbr:Couple_(mechanics) dbr:Section_modulus dbr:Simultaneous_equations dbr:Newton's_Laws_of_Motion dbr:Normal_distribution dbr:Newton_(unit) dbr:Tension_(physics) dbr:Henri_Tresca dbr:Safety_factor dbr:Structural_engineering dbr:Stress_(physics) dbr:Plasticity_(physics) dbr:Mathematics dbr:Bending dbr:Structural_analysis dbr:Bending_moment n4:Deflection.svg dbr:Cross_section_(geometry) dbr:Young's_modulus dbr:Neutral_axis dbr:Von_Mises_yield_criterion dbr:Corrosion dbr:Ductile dbr:Shear_stress dbr:Building_material dbr:Compression_(physical) dbr:Geometry dbr:Torque dbr:Second_moment_of_area dbr:Dynamics_(mechanics) dbr:Virtual_work dbr:Force n4:Bolt-in-shear.PNG dbc:Structural_engineering dbr:Standard_deviations dbr:Structural_load dbr:Free-body_diagram dbr:Yield_(engineering) dbr:Mean dbr:Strain_(materials_science) dbr:Structural_engineering_software dbr:Statistics dbr:Hooke's_Law dbr:Mohr's_circle
dbo:wikiPageExternalLink
n9:Toward-a-Consistent-Design-of-Structural-Concrete.pdf n10:books%3Fid=wU1CAAAAIAAJ&q=The+Theory+of+Equilibrium+of+Elastic+Systems+and+Its+Applications&dq=The+Theory+of+Equilibrium+of+Elastic+Systems+and+Its+Applications&pgis=1 n13:0415268435 n10:books%3Fid=TA-l3gysWaUC&printsec=frontcover&dq=Philosophi%C3%A6+Naturalis+Principia+Mathematica
owl:sameAs
freebase:m.05zrhd7 n17:4vcvs wikidata:Q7625025
dbp:wikiPageUsesTemplate
dbt:ISBN dbt:See_also dbt:Globalize dbt:Citation_needed dbt:Main
dbo:thumbnail
n6:Bolt-in-shear.png?width=300
dbo:abstract
Structural engineering depends upon a detailed knowledge of loads, physics and materials to understand and predict how structures support and resist self-weight and imposed loads. To apply the knowledge successfully structural engineers will need a detailed knowledge of mathematics and of relevant empirical and theoretical design codes. They will also need to know about the corrosion resistance of the materials and structures, especially when those structures are exposed to the external environment. The criteria which govern the design of a structure are either serviceability (criteria which define whether the structure is able to adequately fulfill its function) or strength (criteria which define whether a structure is able to safely support and resist its design loads). A structural engineer designs a structure to have sufficient strength and stiffness to meet these criteria. Loads imposed on structures are supported by means of forces transmitted through structural elements. These forces can manifest themselves as tension (axial force), compression (axial force), shear, and bending, or flexure (a bending moment is a force multiplied by a distance, or lever arm, hence producing a turning effect or torque).
prov:wasDerivedFrom
wikipedia-en:Structural_engineering_theory?oldid=1024238255&ns=0
dbo:wikiPageLength
21116
foaf:isPrimaryTopicOf
wikipedia-en:Structural_engineering_theory
Subject Item
dbr:List_of_structural_engineering_software
dbo:wikiPageWikiLink
dbr:Structural_engineering_theory
Subject Item
dbr:Plastic_moment
dbo:wikiPageWikiLink
dbr:Structural_engineering_theory
Subject Item
wikipedia-en:Structural_engineering_theory
foaf:primaryTopic
dbr:Structural_engineering_theory