This HTML5 document contains 56 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dbpedia-dehttp://de.dbpedia.org/resource/
dctermshttp://purl.org/dc/terms/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n12https://global.dbpedia.org/id/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
wikipedia-enhttp://en.wikipedia.org/wiki/
dbchttp://dbpedia.org/resource/Category:
dbphttp://dbpedia.org/property/
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
goldhttp://purl.org/linguistics/gold/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Normal_bundle
dbo:wikiPageWikiLink
dbr:Stable_normal_bundle
Subject Item
dbr:Normal_invariant
dbo:wikiPageWikiLink
dbr:Stable_normal_bundle
Subject Item
dbr:Tubular_neighborhood
dbo:wikiPageWikiLink
dbr:Stable_normal_bundle
Subject Item
dbr:Manifold
dbo:wikiPageWikiLink
dbr:Stable_normal_bundle
Subject Item
dbr:Michael_Spivak
dbo:wikiPageWikiLink
dbr:Stable_normal_bundle
Subject Item
dbr:Immersion_(mathematics)
dbo:wikiPageWikiLink
dbr:Stable_normal_bundle
Subject Item
dbr:Plumbing_(mathematics)
dbo:wikiPageWikiLink
dbr:Stable_normal_bundle
Subject Item
dbr:Poincaré_space
dbo:wikiPageWikiLink
dbr:Stable_normal_bundle
Subject Item
dbr:Stable_normal_bundle
rdfs:label
Stable normal bundle Stabiles Normalenbündel
rdfs:comment
Das stabile Normalenbündel einer Mannigfaltigkeit ist ein wichtiges Hilfsmittel in der Differentialtopologie, einem Teilgebiet der Mathematik. In surgery theory, a branch of mathematics, the stable normal bundle of a differentiable manifold is an invariant which encodes the stable normal (dually, tangential) data. There are analogs for generalizations of manifold, notably PL-manifolds and topological manifolds. There is also an analogue in homotopy theory for Poincaré spaces, the Spivak spherical fibration, named after Michael Spivak.
dcterms:subject
dbc:Differential_geometry dbc:Surgery_theory
dbo:wikiPageID
9901365
dbo:wikiPageRevisionID
1112724246
dbo:wikiPageWikiLink
dbr:Stable_homotopy_groups_of_spheres dbr:Surgery_obstruction dbc:Surgery_theory dbr:Topological_manifold dbr:Null_homotopic dbr:Surgery_theory dbr:CW-complex dbr:Differentiable_manifold dbr:Classifying_space dbr:Poincaré_space dbr:General_position dbr:Homotopy dbr:Hilbert_space dbr:PL-manifold dbr:Normal_bundle dbr:Fibration dbr:Michael_Spivak dbr:Homotopy_theory dbr:Hassler_Whitney dbr:Euclidean_space dbc:Differential_geometry dbr:Tubular_neighborhood dbr:Homotopic dbr:Whitney_sum dbr:Homotopy_groups dbr:Mathematics
owl:sameAs
wikidata:Q7595772 n12:4w2jV freebase:m.02pwf8x dbpedia-de:Stabiles_Normalenbündel
dbp:wikiPageUsesTemplate
dbt:Manifolds dbt:Technical dbt:Reflist
dbo:abstract
In surgery theory, a branch of mathematics, the stable normal bundle of a differentiable manifold is an invariant which encodes the stable normal (dually, tangential) data. There are analogs for generalizations of manifold, notably PL-manifolds and topological manifolds. There is also an analogue in homotopy theory for Poincaré spaces, the Spivak spherical fibration, named after Michael Spivak. Das stabile Normalenbündel einer Mannigfaltigkeit ist ein wichtiges Hilfsmittel in der Differentialtopologie, einem Teilgebiet der Mathematik.
gold:hypernym
dbr:Invariant
prov:wasDerivedFrom
wikipedia-en:Stable_normal_bundle?oldid=1112724246&ns=0
dbo:wikiPageLength
6745
foaf:isPrimaryTopicOf
wikipedia-en:Stable_normal_bundle
Subject Item
wikipedia-en:Stable_normal_bundle
foaf:primaryTopic
dbr:Stable_normal_bundle