An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In surgery theory, a branch of mathematics, the stable normal bundle of a differentiable manifold is an invariant which encodes the stable normal (dually, tangential) data. There are analogs for generalizations of manifold, notably PL-manifolds and topological manifolds. There is also an analogue in homotopy theory for Poincaré spaces, the Spivak spherical fibration, named after Michael Spivak.

Property Value
dbo:abstract
  • Das stabile Normalenbündel einer Mannigfaltigkeit ist ein wichtiges Hilfsmittel in der Differentialtopologie, einem Teilgebiet der Mathematik. (de)
  • In surgery theory, a branch of mathematics, the stable normal bundle of a differentiable manifold is an invariant which encodes the stable normal (dually, tangential) data. There are analogs for generalizations of manifold, notably PL-manifolds and topological manifolds. There is also an analogue in homotopy theory for Poincaré spaces, the Spivak spherical fibration, named after Michael Spivak. (en)
dbo:wikiPageID
  • 9901365 (xsd:integer)
dbo:wikiPageLength
  • 6745 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1112724246 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
gold:hypernym
rdfs:comment
  • Das stabile Normalenbündel einer Mannigfaltigkeit ist ein wichtiges Hilfsmittel in der Differentialtopologie, einem Teilgebiet der Mathematik. (de)
  • In surgery theory, a branch of mathematics, the stable normal bundle of a differentiable manifold is an invariant which encodes the stable normal (dually, tangential) data. There are analogs for generalizations of manifold, notably PL-manifolds and topological manifolds. There is also an analogue in homotopy theory for Poincaré spaces, the Spivak spherical fibration, named after Michael Spivak. (en)
rdfs:label
  • Stabiles Normalenbündel (de)
  • Stable normal bundle (en)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License