This HTML5 document contains 216 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dcthttp://purl.org/dc/terms/
yago-reshttp://yago-knowledge.org/resource/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n6https://books.google.com/
dbpedia-eshttp://es.dbpedia.org/resource/
n26http://www.paultaylor.eu/stable/
n25https://global.dbpedia.org/id/
n16https://www.math.wisc.edu/logic/theses/
yagohttp://dbpedia.org/class/yago/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
n19https://www.jstor.org/stable/
freebasehttp://rdf.freebase.com/ns/
dbpedia-pthttp://pt.dbpedia.org/resource/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
n27https://arxiv.org/abs/
owlhttp://www.w3.org/2002/07/owl#
n22http://www.math.psu.edu/simpson/sosoa/
dbpedia-frhttp://fr.dbpedia.org/resource/
wikipedia-enhttp://en.wikipedia.org/wiki/
dbphttp://dbpedia.org/property/
provhttp://www.w3.org/ns/prov#
dbchttp://dbpedia.org/resource/Category:
xsdhhttp://www.w3.org/2001/XMLSchema#
n21http://dbpedia.org/resource/Reverse_Mathematics:
goldhttp://purl.org/linguistics/gold/
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:List_of_first-order_theories
dbo:wikiPageWikiLink
dbr:Second-order_arithmetic
Subject Item
dbr:Paris–Harrington_theorem
dbo:wikiPageWikiLink
dbr:Second-order_arithmetic
Subject Item
dbr:Determinacy
dbo:wikiPageWikiLink
dbr:Second-order_arithmetic
Subject Item
dbr:Peano_axioms
dbo:wikiPageWikiLink
dbr:Second-order_arithmetic
Subject Item
dbr:Reuben_Goodstein
dbo:wikiPageWikiLink
dbr:Second-order_arithmetic
Subject Item
dbr:Reverse_mathematics
dbo:wikiPageWikiLink
dbr:Second-order_arithmetic
Subject Item
dbr:De_Bruijn–Erdős_theorem_(graph_theory)
dbo:wikiPageWikiLink
dbr:Second-order_arithmetic
Subject Item
dbr:Definable_real_number
dbo:wikiPageWikiLink
dbr:Second-order_arithmetic
Subject Item
dbr:Descriptive_set_theory
dbo:wikiPageWikiLink
dbr:Second-order_arithmetic
Subject Item
dbr:Dushnik–Miller_theorem
dbo:wikiPageWikiLink
dbr:Second-order_arithmetic
Subject Item
dbr:Dyadic_rational
dbo:wikiPageWikiLink
dbr:Second-order_arithmetic
Subject Item
dbr:Induction,_bounding_and_least_number_principles
dbo:wikiPageWikiLink
dbr:Second-order_arithmetic
Subject Item
dbr:Interpretation_(logic)
dbo:wikiPageWikiLink
dbr:Second-order_arithmetic
Subject Item
dbr:Kőnig's_lemma
dbo:wikiPageWikiLink
dbr:Second-order_arithmetic
Subject Item
dbr:List_of_mathematical_logic_topics
dbo:wikiPageWikiLink
dbr:Second-order_arithmetic
Subject Item
dbr:Computability_theory
dbo:wikiPageWikiLink
dbr:Second-order_arithmetic
Subject Item
dbr:Analytical_hierarchy
dbo:wikiPageWikiLink
dbr:Second-order_arithmetic
Subject Item
dbr:Ordinal_collapsing_function
dbo:wikiPageWikiLink
dbr:Second-order_arithmetic
Subject Item
dbr:Gottlob_Frege
dbo:wikiPageWikiLink
dbr:Second-order_arithmetic
Subject Item
dbr:Bounded_quantifier
dbo:wikiPageWikiLink
dbr:Second-order_arithmetic
Subject Item
dbr:Conservative_extension
dbo:wikiPageWikiLink
dbr:Second-order_arithmetic
Subject Item
dbr:Theodore_Slaman
dbo:wikiPageWikiLink
dbr:Second-order_arithmetic
Subject Item
dbr:Theories_of_iterated_inductive_definitions
dbo:wikiPageWikiLink
dbr:Second-order_arithmetic
Subject Item
dbr:Equiconsistency
dbo:wikiPageWikiLink
dbr:Second-order_arithmetic
Subject Item
dbr:Ordinal_analysis
dbo:wikiPageWikiLink
dbr:Second-order_arithmetic
Subject Item
dbr:Andrzej_Grzegorczyk
dbo:wikiPageWikiLink
dbr:Second-order_arithmetic
Subject Item
dbr:Arithmetical_hierarchy
dbo:wikiPageWikiLink
dbr:Second-order_arithmetic
Subject Item
dbr:Zermelo–Fraenkel_set_theory
dbo:wikiPageWikiLink
dbr:Second-order_arithmetic
Subject Item
dbr:Kruskal's_tree_theorem
dbo:wikiPageWikiLink
dbr:Second-order_arithmetic
Subject Item
dbr:Primitive_recursive_arithmetic
dbo:wikiPageWikiLink
dbr:Second-order_arithmetic
Subject Item
dbr:Japaridze's_polymodal_logic
dbo:wikiPageWikiLink
dbr:Second-order_arithmetic
Subject Item
dbr:Large_countable_ordinal
dbo:wikiPageWikiLink
dbr:Second-order_arithmetic
Subject Item
dbr:Laver's_theorem
dbo:wikiPageWikiLink
dbr:Second-order_arithmetic
Subject Item
dbr:Robinson_arithmetic
dbo:wikiPageWikiLink
dbr:Second-order_arithmetic
Subject Item
dbr:True_arithmetic
dbo:wikiPageWikiLink
dbr:Second-order_arithmetic
Subject Item
dbr:Alpha_recursion_theory
dbo:wikiPageWikiLink
dbr:Second-order_arithmetic
Subject Item
dbr:First-order_logic
dbo:wikiPageWikiLink
dbr:Second-order_arithmetic
Subject Item
dbr:Nonrecursive_ordinal
dbo:wikiPageWikiLink
dbr:Second-order_arithmetic
Subject Item
dbr:Goodstein's_theorem
dbo:wikiPageWikiLink
dbr:Second-order_arithmetic
Subject Item
dbr:Hilbert's_second_problem
dbo:wikiPageWikiLink
dbr:Second-order_arithmetic
Subject Item
dbr:Gödel's_incompleteness_theorems
dbo:wikiPageWikiLink
dbr:Second-order_arithmetic
Subject Item
dbr:Hahn–Banach_theorem
dbo:wikiPageWikiLink
dbr:Second-order_arithmetic
Subject Item
dbr:Hilary_Putnam
dbo:wikiPageWikiLink
dbr:Second-order_arithmetic
Subject Item
dbr:Hyperarithmetical_theory
dbo:wikiPageWikiLink
dbr:Second-order_arithmetic
Subject Item
dbr:Takeuti's_conjecture
dbo:wikiPageWikiLink
dbr:Second-order_arithmetic
Subject Item
dbr:Axiom
dbo:wikiPageWikiLink
dbr:Second-order_arithmetic
Subject Item
dbr:Axiom_of_constructibility
dbo:wikiPageWikiLink
dbr:Second-order_arithmetic
Subject Item
dbr:Axiom_of_infinity
dbo:wikiPageWikiLink
dbr:Second-order_arithmetic
Subject Item
dbr:Axiom_schema_of_replacement
dbo:wikiPageWikiLink
dbr:Second-order_arithmetic
Subject Item
dbr:Grundlagen_der_Mathematik
dbo:wikiPageWikiLink
dbr:Second-order_arithmetic
Subject Item
dbr:Hume's_principle
dbo:wikiPageWikiLink
dbr:Second-order_arithmetic
Subject Item
dbr:Impredicativity
dbo:wikiPageWikiLink
dbr:Second-order_arithmetic
Subject Item
dbr:Buchholz's_ordinal
dbo:wikiPageWikiLink
dbr:Second-order_arithmetic
Subject Item
dbr:Ramsey's_theorem
dbo:wikiPageWikiLink
dbr:Second-order_arithmetic
Subject Item
dbr:Second-order_logic
dbo:wikiPageWikiLink
dbr:Second-order_arithmetic
Subject Item
dbr:Second-order
dbo:wikiPageWikiLink
dbr:Second-order_arithmetic
dbo:wikiPageDisambiguates
dbr:Second-order_arithmetic
Subject Item
dbr:Second-order_arithmetic
rdf:type
yago:WikicatFormalTheoriesOfArithmetic yago:PsychologicalFeature100023100 yago:Cognition100023271 yago:Thinking105770926 yago:Abstraction100002137 yago:Theory105989479 yago:HigherCognitiveProcess105770664 yago:Explanation105793000 yago:Process105701363 dbo:Book
rdfs:label
Aritmética de segunda ordem Arithmétique du second ordre Second-order arithmetic Aritmética de segundo orden
rdfs:comment
Na Lógica matemática, aritmética de segunda ordem é uma coleção de sistemas axiomáticos que formalizam os números naturais e seus subconjuntos. É uma alternativa para a teoria axiomática dos conjuntos como fundamentos, mas não tudo, da matemática. Foi introduzida por David Hilbert e Paul Bernays em seu livro . A axiomatização padrão da aritmética de segunda ordem é denotada Z2. In mathematical logic, second-order arithmetic is a collection of axiomatic systems that formalize the natural numbers and their subsets. It is an alternative to axiomatic set theory as a foundation for much, but not all, of mathematics. A precursor to second-order arithmetic that involves third-order parameters was introduced by David Hilbert and Paul Bernays in their book Grundlagen der Mathematik. The standard axiomatization of second-order arithmetic is denoted by Z2. En logique mathématique, l'arithmétique du second ordre est une théorie des entiers naturels et des ensembles d'entiers naturels.Elle a été introduite par David Hilbert et Paul Bernays dans leur livre Grundlagen der Mathematik. L'axiomatisation usuelle de l'arithmétique du second ordre est notée Z2. Elle permet en particulier de traiter les nombres réels, qui peuvent être représentés comme des (ensembles infinis) d'entiers, et de développer l'analyse usuelle. Pour cette raison, les logiciens l'appellent également « analyse ». En la lógica matemática, la aritmética de segundo orden es una colección de sistemas axiomáticos que formalizan los números naturales y sus subconjuntos. La aritmética de segundo orden también puede verse como una versión débil de teoría de conjuntos en la que todo elemento es un número natural o un conjunto de números naturales.
dct:subject
dbc:Formal_theories_of_arithmetic
dbo:wikiPageID
3542454
dbo:wikiPageRevisionID
1122592615
dbo:wikiPageWikiLink
dbr:Existential_quantifier dbr:Prefix dbr:Nonconstructive dbr:Natural_number dbr:Ulrich_Kohlenbach dbr:Classical_mathematics dbr:Quantification_(logic) dbr:Well-formed_formula dbr:Infix dbr:Notices_of_the_American_Mathematical_Society dbr:Set_theory dbr:Bound_variable dbr:Dag_Normann dbr:Turing_jump dbr:Variable_(mathematics) dbr:Boldface_(mathematics) dbr:Property_of_Baire dbr:True_arithmetic dbr:Reverse_mathematics dbr:Robinson_arithmetic dbr:Axiom dbr:Term_(logic) dbr:Individual dbr:Projective_determinacy dbr:Order_relation dbc:Formal_theories_of_arithmetic dbr:W._Hugh_Woodin dbr:Foundation_of_mathematics dbr:Jean-Yves_Girard dbr:Axiomatic_set_theory dbr:Analytical_hierarchy dbr:Steve_Simpson_(mathematician) dbr:Journal_of_Symbolic_Logic dbr:Metric_space dbr:Peano_arithmetic dbr:Peano_axioms dbr:Infinite_set dbr:Equiconsistency dbr:Paul_Bernays dbr:Zero dbr:Successor_function dbr:John_P._Burgess dbr:Hermann_Weyl dbr:First-order_logic dbr:First-order_theory dbr:Grundlagen_der_Mathematik dbr:Primitive_recursive_arithmetic dbr:Proof-theoretic_strength dbr:Perfect_set_property dbr:Stewart_Shapiro dbr:Domain_of_discourse dbr:Zermelo–Fraenkel_set_theory dbr:Paris–Harrington_theorem dbr:Separable_space dbr:Skolem_prenex_form dbr:Riemann_integrable dbr:David_Hilbert dbr:Binary_operation dbr:Injective_function dbr:System_F dbr:Topology dbr:Mathematical_logic dbr:Kőnig's_lemma dbr:Mathematical_analysis dbr:Intermediate_value_theorem dbr:Theory_(logic) dbr:Woodin_cardinal dbr:Harvey_Friedman dbr:Binary_relation dbr:Wilfried_Sieg dbr:Many-sorted_logic dbr:Complete_metric_space dbr:ZFC dbr:Multiplication dbr:Presburger_arithmetic dbr:Bolzano–Weierstrass_theorem dbr:Dialectica_interpretation dbr:Addition dbr:Real_number dbr:Ordinal_analysis dbr:Samuel_Buss dbr:Uniformization_(set_theory) dbr:Measure_theory dbr:Second-order_logic dbr:Recursion dbr:Gaisi_Takeuti
dbo:wikiPageExternalLink
n6:books%3Fid=hf9ZDwAAQBAJ&printsec=frontcover%23v=snippet&q=second-order%20arithmetic&f=false n16:hunter.pdf n19:2272259 n22: n26:Proofs+Types.html n6:books%3Fid=TdnQCwAAQBAJ&printsec=frontcover%23v=onepage&q=%22Second-order%20arithmetic%22&f=false n27:2007.07560 n27:
owl:sameAs
dbpedia-pt:Aritmética_de_segunda_ordem wikidata:Q7442973 dbpedia-es:Aritmética_de_segundo_orden yago-res:Second-order_arithmetic dbpedia-fr:Arithmétique_du_second_ordre n25:4uskT freebase:m.09kh4g
dbp:wikiPageUsesTemplate
dbt:Short_description dbt:Main dbt:Mr dbt:Reflist dbt:Isbn
dbo:abstract
Na Lógica matemática, aritmética de segunda ordem é uma coleção de sistemas axiomáticos que formalizam os números naturais e seus subconjuntos. É uma alternativa para a teoria axiomática dos conjuntos como fundamentos, mas não tudo, da matemática. Foi introduzida por David Hilbert e Paul Bernays em seu livro . A axiomatização padrão da aritmética de segunda ordem é denotada Z2. Aritmética de segunda ordem inclui, mas é significativamente mais forte do que, a aritmética de Peano. Ao contrário da aritmética de Peano, aritmética de segunda ordem permite a quantificação sobre conjuntos de números, bem como os próprios números. Como os números reais podem ser representados como conjuntos (infinitos) de números naturais de maneiras bem conhecidas, e dado que a aritmética de segunda ordem permite a quantificação sobre esses conjuntos, é possível formalizar os números reais em aritmética de segunda ordem. Por esta razão, a aritmética de segunda ordem é chamada algumas vezes de "análise". Aritmética de segunda ordem pode também ser vista como uma versão fraca da teoria dos conjuntos, em que cada elemento seja um número natural ou um conjunto de números naturais. Embora seja muito mais fraca do que a teoria axiomática de Zermelo-Fraenkel, a aritmética de segunda ordem pode provar essencialmente todos os resultados de matemática clássica expressível em sua linguagem. Um subsistema de aritmética de segunda ordem é uma teoria na linguagem da aritmética de segunda ordem onde cada axioma é um teorema da aritmética de segunda ordem plena (Z2). Esses subsistemas são essenciais para a , um programa de pesquisa que investiga o quanto a matemática clássica pode ser derivada em certos subsistemas fracos de intensidade variável. A maior parte do núcleo da matemática pode ser formalizada por esses subsistemas fracos, alguns dos quais são definidos a seguir. Matemática reversa também esclarece o âmbito e as modalidades em que a matemática clássica é não-construtiva. En la lógica matemática, la aritmética de segundo orden es una colección de sistemas axiomáticos que formalizan los números naturales y sus subconjuntos. La aritmética de segundo orden también puede verse como una versión débil de teoría de conjuntos en la que todo elemento es un número natural o un conjunto de números naturales. En logique mathématique, l'arithmétique du second ordre est une théorie des entiers naturels et des ensembles d'entiers naturels.Elle a été introduite par David Hilbert et Paul Bernays dans leur livre Grundlagen der Mathematik. L'axiomatisation usuelle de l'arithmétique du second ordre est notée Z2. L'arithmétique de second ordre a pour conséquence les théorèmes de l'arithmétique de Peano (du premier ordre), mais elle est à la fois plus forte et plus expressive que celle-ci. L'arithmétique du second ordre permet la quantification non seulement sur les nombres entiers naturels, comme l'arithmétique de Peano, mais aussi sur les ensembles d'entiers naturels. Elle comprend en particulier une version du schéma d'axiomes de compréhension restreinte aux ensembles d'entiers naturels, qui est exprimable grâce à ces nouvelles quantifications. Le raisonnement par récurrence s'exprime par un seul axiome. Elle permet en particulier de traiter les nombres réels, qui peuvent être représentés comme des (ensembles infinis) d'entiers, et de développer l'analyse usuelle. Pour cette raison, les logiciens l'appellent également « analyse ». L'arithmétique de second ordre peut aussi être considérée comme une version faible de la théorie des ensembles dans laquelle chaque élément est soit un entier naturel, soit un ensemble d'entiers naturels. Bien qu'elle soit plus faible que la théorie des ensembles de Zermelo-Fraenkel, au sens où il existe des énoncés de l'arithmétique du second ordre démontrables en théorie des ensembles, mais pas en arithmétique du second ordre, elle permet de prouver l'essentiel des résultats des mathématiques classiques exprimables dans son langage. L'arithmétique du second ordre, et surtout certains de ses sous-systèmes, construits essentiellement à partir de restrictions des schémas d'axiomes de compréhension et de récurrence, jouent un rôle important pour les mathématiques à rebours. In mathematical logic, second-order arithmetic is a collection of axiomatic systems that formalize the natural numbers and their subsets. It is an alternative to axiomatic set theory as a foundation for much, but not all, of mathematics. A precursor to second-order arithmetic that involves third-order parameters was introduced by David Hilbert and Paul Bernays in their book Grundlagen der Mathematik. The standard axiomatization of second-order arithmetic is denoted by Z2. Second-order arithmetic includes, but is significantly stronger than, its first-order counterpart Peano arithmetic. Unlike Peano arithmetic, second-order arithmetic allows quantification over sets of natural numbers as well as numbers themselves. Because real numbers can be represented as (infinite) sets of natural numbers in well-known ways, and because second-order arithmetic allows quantification over such sets, it is possible to formalize the real numbers in second-order arithmetic. For this reason, second-order arithmetic is sometimes called "analysis" (Sieg 2013, p. 291). Second-order arithmetic can also be seen as a weak version of set theory in which every element is either a natural number or a set of natural numbers. Although it is much weaker than Zermelo–Fraenkel set theory, second-order arithmetic can prove essentially all of the results of classical mathematics expressible in its language. A subsystem of second-order arithmetic is a theory in the language of second-order arithmetic each axiom of which is a theorem of full second-order arithmetic (Z2). Such subsystems are essential to reverse mathematics, a research program investigating how much of classical mathematics can be derived in certain weak subsystems of varying strength. Much of core mathematics can be formalized in these weak subsystems, some of which are defined below. Reverse mathematics also clarifies the extent and manner in which classical mathematics is nonconstructive.
gold:hypernym
dbr:Collection
prov:wasDerivedFrom
wikipedia-en:Second-order_arithmetic?oldid=1122592615&ns=0
dbo:wikiPageLength
27891
foaf:isPrimaryTopicOf
wikipedia-en:Second-order_arithmetic
Subject Item
dbr:Undecidable_problem
dbo:wikiPageWikiLink
dbr:Second-order_arithmetic
Subject Item
dbr:Extensions_of_First_Order_Logic
dbo:wikiPageWikiLink
dbr:Second-order_arithmetic
Subject Item
dbr:Finite_promise_games_and_greedy_clique_sequences
dbo:wikiPageWikiLink
dbr:Second-order_arithmetic
Subject Item
n21:_Proofs_from_the_Inside_Out
dbo:wikiPageWikiLink
dbr:Second-order_arithmetic
Subject Item
dbr:Second-order_propositional_logic
dbo:wikiPageWikiLink
dbr:Second-order_arithmetic
Subject Item
dbr:Tarski's_undefinability_theorem
dbo:wikiPageWikiLink
dbr:Second-order_arithmetic
Subject Item
dbr:Outline_of_mathematics
dbo:wikiPageWikiLink
dbr:Second-order_arithmetic
Subject Item
dbr:Shrewd_cardinal
dbo:wikiPageWikiLink
dbr:Second-order_arithmetic
Subject Item
dbr:Well-ordering_principle
dbo:wikiPageWikiLink
dbr:Second-order_arithmetic
Subject Item
dbr:Slicing_the_Truth
dbo:wikiPageWikiLink
dbr:Second-order_arithmetic
Subject Item
dbr:Z2
dbo:wikiPageWikiLink
dbr:Second-order_arithmetic
Subject Item
dbr:Arithmetical_Transfinite_Recursion
dbo:wikiPageWikiLink
dbr:Second-order_arithmetic
dbo:wikiPageRedirects
dbr:Second-order_arithmetic
Subject Item
dbr:Arithmetical_comprehension
dbo:wikiPageWikiLink
dbr:Second-order_arithmetic
dbo:wikiPageRedirects
dbr:Second-order_arithmetic
Subject Item
dbr:Arithmetical_comprehension_axiom
dbo:wikiPageWikiLink
dbr:Second-order_arithmetic
dbo:wikiPageRedirects
dbr:Second-order_arithmetic
Subject Item
dbr:Higher-order_arithmetic
dbo:wikiPageWikiLink
dbr:Second-order_arithmetic
dbo:wikiPageRedirects
dbr:Second-order_arithmetic
Subject Item
dbr:Recursive_Comprehension
dbo:wikiPageWikiLink
dbr:Second-order_arithmetic
dbo:wikiPageRedirects
dbr:Second-order_arithmetic
Subject Item
dbr:Second_order_arithmetic
dbo:wikiPageWikiLink
dbr:Second-order_arithmetic
dbo:wikiPageRedirects
dbr:Second-order_arithmetic
Subject Item
wikipedia-en:Second-order_arithmetic
foaf:primaryTopic
dbr:Second-order_arithmetic