This HTML5 document contains 64 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
yago-reshttp://yago-knowledge.org/resource/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n12https://global.dbpedia.org/id/
yagohttp://dbpedia.org/class/yago/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
wikipedia-enhttp://en.wikipedia.org/wiki/
provhttp://www.w3.org/ns/prov#
dbphttp://dbpedia.org/property/
dbchttp://dbpedia.org/resource/Category:
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Proximal_gradient_methods_for_learning
rdf:type
yago:Know-how105616786 yago:Cognition100023271 yago:Ability105616246 yago:Method105660268 yago:Abstraction100002137 yago:PsychologicalFeature100023100 yago:WikicatFirstOrderMethods
rdfs:label
Proximal gradient methods for learning
rdfs:comment
Proximal gradient (forward backward splitting) methods for learning is an area of research in optimization and statistical learning theory which studies algorithms for a general class of convex regularization problems where the regularization penalty may not be differentiable. One such example is regularization (also known as Lasso) of the form
dcterms:subject
dbc:First_order_methods dbc:Convex_optimization dbc:Machine_learning
dbo:wikiPageID
41200806
dbo:wikiPageRevisionID
1117682944
dbo:wikiPageWikiLink
dbr:Subdifferential dbr:Ball_(mathematics) dbr:Semicontinuous_function dbr:Thresholding_(image_processing) dbr:Elastic_net_regularization dbr:Convex_optimization dbr:Empirical_risk_minimization dbr:Lipschitz_continuity dbr:L1-norm dbr:Statistical_learning_theory dbr:Convex_conjugate dbr:Projection_(linear_algebra) dbr:Convex_function dbr:Differentiable_function dbc:First_order_methods dbr:Convex_analysis dbr:Semi-continuity dbc:Machine_learning dbr:Dual_norm dbr:Lasso_(statistics) dbr:Hilbert_space dbr:Optimization dbc:Convex_optimization dbr:Gradient dbr:Gradient_descent dbr:Directed_acyclic_graph dbr:Proximal_operator dbr:Regularization_(mathematics) dbr:Proximal_gradient_method
owl:sameAs
yago-res:Proximal_gradient_methods_for_learning n12:fAvL wikidata:Q17086776 freebase:m.0_frgyy
dbp:wikiPageUsesTemplate
dbt:Reflist
dbo:abstract
Proximal gradient (forward backward splitting) methods for learning is an area of research in optimization and statistical learning theory which studies algorithms for a general class of convex regularization problems where the regularization penalty may not be differentiable. One such example is regularization (also known as Lasso) of the form Proximal gradient methods offer a general framework for solving regularization problems from statistical learning theory with penalties that are tailored to a specific problem application. Such customized penalties can help to induce certain structure in problem solutions, such as sparsity (in the case of lasso) or group structure (in the case of group lasso).
prov:wasDerivedFrom
wikipedia-en:Proximal_gradient_methods_for_learning?oldid=1117682944&ns=0
dbo:wikiPageLength
20337
foaf:isPrimaryTopicOf
wikipedia-en:Proximal_gradient_methods_for_learning
Subject Item
dbr:Proximal_gradient
dbo:wikiPageWikiLink
dbr:Proximal_gradient_methods_for_learning
dbo:wikiPageRedirects
dbr:Proximal_gradient_methods_for_learning
Subject Item
dbr:Least_squares
dbo:wikiPageWikiLink
dbr:Proximal_gradient_methods_for_learning
Subject Item
dbr:Christine_De_Mol
dbo:wikiPageWikiLink
dbr:Proximal_gradient_methods_for_learning
Subject Item
dbr:Multiple_kernel_learning
dbo:wikiPageWikiLink
dbr:Proximal_gradient_methods_for_learning
Subject Item
dbr:Statistical_learning_theory
dbo:wikiPageWikiLink
dbr:Proximal_gradient_methods_for_learning
Subject Item
dbr:Proximal_gradient_method
dbo:wikiPageWikiLink
dbr:Proximal_gradient_methods_for_learning
Subject Item
dbr:Outline_of_machine_learning
dbo:wikiPageWikiLink
dbr:Proximal_gradient_methods_for_learning
Subject Item
dbr:Structured_sparsity_regularization
dbo:wikiPageWikiLink
dbr:Proximal_gradient_methods_for_learning
Subject Item
dbr:Projected_gradient_descent
dbo:wikiPageWikiLink
dbr:Proximal_gradient_methods_for_learning
dbo:wikiPageRedirects
dbr:Proximal_gradient_methods_for_learning
Subject Item
wikipedia-en:Proximal_gradient_methods_for_learning
foaf:primaryTopic
dbr:Proximal_gradient_methods_for_learning