This HTML5 document contains 266 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
n14http://hdl.handle.net/2027/
dctermshttp://purl.org/dc/terms/
dbohttp://dbpedia.org/ontology/
n8http://dbpedia.org/resource/File:
foafhttp://xmlns.com/foaf/0.1/
n16https://global.dbpedia.org/id/
n11https://www.amazon.com/Semiregular-Polytopes-Hyperspaces-Emanuel-Lodewijk/dp/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
n7http://commons.wikimedia.org/wiki/Special:FilePath/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
wikipedia-enhttp://en.wikipedia.org/wiki/
dbphttp://dbpedia.org/property/
dbchttp://dbpedia.org/resource/Category:
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
goldhttp://purl.org/linguistics/gold/
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Emanuel_Lodewijk_Elte
dbo:wikiPageWikiLink
dbr:Gosset–Elte_figures
Subject Item
dbr:22_(number)
dbo:wikiPageWikiLink
dbr:Gosset–Elte_figures
Subject Item
dbr:Gosset–Elte_figures
rdf:type
dbo:Band
rdfs:label
Gosset–Elte figures
rdfs:comment
In geometry, the Gosset–Elte figures, named by Coxeter after Thorold Gosset and E. L. Elte, are a group of uniform polytopes which are not regular, generated by a Wythoff construction with mirrors all related by order-2 and order-3 dihedral angles. They can be seen as one-end-ringed Coxeter–Dynkin diagrams. Rectified simplices are included in the list as limiting cases with k=0. Similarly 0i,j,k represents a bifurcated graph with a central node ringed.
foaf:depiction
n7:Gosset_1_42_polytope_petrie.svg n7:6-orthoplex_B5.svg n7:6-simplex_t2.svg n7:8-simplex_t0.svg n7:6-cube_t2_B5.svg n7:6-demicube.svg n7:9-simplex_t4.svg n7:4-simplex_t1.svg n7:Up2_1_32_t0_E7.svg n7:9-simplex_t3.svg n7:5-simplex_t2.svg n7:5-demicube.svg n7:5-orthoplex_B4.svg n7:9-simplex_t2.svg n7:5-cube_t2_B4.svg n7:9-orthoplex_B8.svg n7:9-cube_t2_B8.svg n7:9-simplex_t1.svg n7:E8Petrie.svg n7:8-simplex_t3.svg n7:3-cube_t2_B2.svg n7:8-orthoplex_B7.svg n7:8-simplex_t2.svg n7:8-cube_t2_B7.svg n7:8-demicube.svg n7:6-simplex_t1.svg n7:7-simplex_t3.svg n7:7-orthoplex_B6.svg n7:7-simplex_t2.svg n7:3-demicube.svg n7:7-simplex_t1.svg n7:2_41_polytope_petrie.svg n7:10-simplex_t0.svg n7:E7_graph.svg n7:Up2_1_32_t1_E7.svg n7:Up_1_22_t1_E6.svg n7:10-demicube.svg n7:4-simplex_t0.svg n7:E6_graph.svg n7:5-simplex_t1.svg n7:Gosset_4_21_polytope_petrie.svg n7:4-cube_t0_B3.svg n7:8-simplex_t1.svg n7:1-simplex_t0.svg n7:7-simplex_t0.svg n7:10-orthoplex_B9.svg n7:10-simplex_t1.svg n7:10-cube_t2_B9.svg n7:Gosset_2_31_polytope.svg n7:6-simplex_t0.svg n7:Simply_Laced_Dynkin_Diagrams.svg n7:2-simplex_t0.svg n7:Gosset_1_22_polytope.png n7:5-simplex_t0.svg n7:9-demicube.svg n7:3-simplex_t0.svg n7:4-demicube.svg n7:3-orthoplex.svg n7:10-simplex_t4.svg n7:7-cube_t2_B6.svg n7:10-simplex_t2.svg n7:7-demicube.svg n7:10-simplex_t3.svg n7:9-simplex_t0.svg
dcterms:subject
dbc:Polytopes
dbo:wikiPageID
10861304
dbo:wikiPageRevisionID
798177449
dbo:wikiPageWikiLink
dbr:Rectified_10-simplex dbr:Coxeter–Dynkin_diagram dbr:Rectified_demiocteract dbr:Coxeter dbr:Rectified_demipenteract dbr:Rectified_demidekeract dbr:16-cell dbr:Rectified_demienneract dbr:Orthogonal_projection dbr:Rectified_demihepteract dbr:Rectified_demihexeract dbr:5-simplex n8:8-demicube.svg dbr:Rectified_1_43_honeycomb dbr:Tetrahedron dbr:Rectified_1_52_honeycomb n8:7-simplex_t1.svg dbr:Demihypercube dbr:2_61_honeycomb dbr:Rectified_3_22_honeycomb n8:6-demicube.svg dbr:Rectified_9-simplex dbr:0_621_honeycomb n8:6-simplex_t1.svg dbr:2_11_polytope n8:E7_graph.svg dbr:Rectified_8-simplex dbr:4_21_polytope n8:5-simplex_t1.svg n8:3-demicube.svg dbr:Rectified_7-simplex dbr:10-simplex dbr:2_31_polytope dbr:Rectified_6-simplex dbr:2_51_honeycomb dbr:10-orthoplex n8:E8Petrie.svg dbr:2_21_polytope dbr:2_22_honeycomb n8:2-simplex_t0.svg dbr:Orthoplex n8:8-simplex_t1.svg n8:8-simplex_t2.svg n8:8-simplex_t3.svg n8:4-simplex_t0.svg n8:Up2_1_32_t1_E7.svg dbr:Birectified_5-simplex dbr:Semiregular_k_21_polytope n8:3-simplex_t0.svg dbr:9-orthoplex dbr:9-simplex n8:Up2_1_32_t0_E7.svg dbr:Birectified_2_22_honeycomb dbr:Birectified_10-simplex n8:5-demicube.svg dbr:Trirectified_8-simplex dbr:Trirectified_9-simplex dbr:Trirectified_7-simplex dbr:Trirectified_10-simplex n8:4-cube_t0_B3.svg dbr:1_32_polytope dbr:1_33_honeycomb dbr:1_52_honeycomb n8:9-simplex_t0.svg dbr:1_22_polytope n8:8-simplex_t0.svg dbr:4_31_honeycomb dbr:2_32_honeycomb dbr:Vertex_figure n8:7-simplex_t0.svg dbr:3_41_honeycomb dbr:1_43_honeycomb dbr:Birectified_8-simplex n8:6-simplex_t0.svg dbr:7-orthoplex dbr:7-simplex dbr:Birectified_9-simplex dbr:Birectified_7-simplex n8:5-simplex_t0.svg dbr:5_21_honeycomb dbr:Regular_Polytopes_(book) dbc:Polytopes dbr:Birectified_6-simplex dbr:Demidekeract n8:Up_1_22_t1_E6.svg n8:3-orthoplex.svg n8:Simply_Laced_Dynkin_Diagrams.svg n8:10-simplex_t3.svg n8:10-simplex_t4.svg dbr:8-simplex n8:10-cube_t2_B9.svg n8:Gosset_1_42_polytope_petrie.svg n8:10-orthoplex_B9.svg n8:10-simplex_t1.svg dbr:6_21_honeycomb n8:10-simplex_t2.svg dbr:Uniform_polytope n8:5-simplex_t2.svg dbr:2_41_polytope dbr:8-orthoplex dbr:Demihexeract n8:8-cube_t2_B7.svg n8:7-orthoplex_B6.svg dbr:Demihepteract n8:8-orthoplex_B7.svg n8:9-demicube.svg dbr:16-cell_honeycomb n8:9-cube_t2_B8.svg n8:9-orthoplex_B8.svg n8:6-orthoplex_B5.svg dbr:3_22_honeycomb n8:7-demicube.svg dbr:Simplex n8:4-demicube.svg dbr:Octahedron n8:5-orthoplex_B4.svg dbr:Demienneract n8:2_41_polytope_petrie.svg dbr:Regular_polytope n8:3-cube_t2_B2.svg dbr:Regular_polytopes dbr:Wythoff_construction n8:10-demicube.svg dbr:6-simplex n8:7-simplex_t2.svg n8:7-simplex_t3.svg dbr:24-cell n8:9-simplex_t1.svg n8:1-simplex_t0.svg n8:9-simplex_t2.svg dbr:1_62_honeycomb n8:9-simplex_t3.svg n8:9-simplex_t4.svg dbr:6-orthoplex dbr:Uniform_2_k1_polytope n8:6-simplex_t2.svg dbr:Petrie_polygon dbr:1_21_polytope dbr:Demipenteract dbr:Pentacross dbr:Geometry dbr:Uniform_1_k2_polytope n8:E6_graph.svg dbr:Demiocteract n8:4-simplex_t1.svg dbr:E._L._Elte dbr:5-cell n8:Gosset_4_21_polytope_petrie.svg dbr:Norman_Johnson_(mathematician) n8:6-cube_t2_B5.svg dbr:Quadrirectified_9-simplex dbr:Rectified_5-cell dbr:Quadrirectified_10-simplex n8:5-cube_t2_B4.svg dbr:1_42_polytope dbr:Thorold_Gosset dbr:Rectified_5-demicube n8:10-simplex_t0.svg dbr:Rectified_5-simplex n8:Gosset_1_22_polytope.png dbr:ADE_classification dbr:3_21_polytope dbr:3_31_honeycomb dbr:Messenger_of_Mathematics dbr:Rectified_1_32_polytope dbr:Rectification_(geometry) dbr:Rectified_1_33_honeycomb n8:Gosset_2_31_polytope.svg dbr:Rectified_1_42_polytope dbr:Coxeter_group dbr:Rectified_16-cell_honeycomb n8:7-cube_t2_B6.svg dbr:Rectified_1_22_polytope
dbo:wikiPageExternalLink
n11:141817968X n14:miun.abr2632.0001.001
owl:sameAs
freebase:m.011jl3vy wikidata:Q18207479 n16:krnJ
dbp:wikiPageUsesTemplate
dbt:CDD dbt:Citation dbt:Cite_journal dbt:ISBN dbt:Reflist
dbo:thumbnail
n7:E8Petrie.svg?width=300
dbo:abstract
In geometry, the Gosset–Elte figures, named by Coxeter after Thorold Gosset and E. L. Elte, are a group of uniform polytopes which are not regular, generated by a Wythoff construction with mirrors all related by order-2 and order-3 dihedral angles. They can be seen as one-end-ringed Coxeter–Dynkin diagrams. The Coxeter symbol for these figures has the form ki,j, where each letter represents a length of order-3 branches on a Coxeter–Dynkin diagram with a single ring on the end node of a k length sequence of branches. The vertex figure of ki,j is (k − 1)i,j, and each of its facets are represented by subtracting one from one of the nonzero subscripts, i.e. ki − 1,j and ki,j − 1. Rectified simplices are included in the list as limiting cases with k=0. Similarly 0i,j,k represents a bifurcated graph with a central node ringed.
gold:hypernym
dbr:Group
prov:wasDerivedFrom
wikipedia-en:Gosset–Elte_figures?oldid=798177449&ns=0
dbo:wikiPageLength
20939
foaf:isPrimaryTopicOf
wikipedia-en:Gosset–Elte_figures
Subject Item
dbr:Gosset-Elte_figures
dbo:wikiPageWikiLink
dbr:Gosset–Elte_figures
dbo:wikiPageRedirects
dbr:Gosset–Elte_figures
Subject Item
dbr:Coxeter_symbol
dbo:wikiPageWikiLink
dbr:Gosset–Elte_figures
dbo:wikiPageRedirects
dbr:Gosset–Elte_figures
Subject Item
wikipedia-en:Gosset–Elte_figures
foaf:primaryTopic
dbr:Gosset–Elte_figures