This HTML5 document contains 317 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dbthttp://dbpedia.org/resource/Template:
n33http://publications.nr.no/
wikipedia-enhttp://en.wikipedia.org/wiki/
n50http://www.tmpl.fi/gp/
n42https://github.com/modsim/
dbrhttp://dbpedia.org/resource/
n36https://web.archive.org/web/20141009045756/http:/becs.aalto.fi/en/research/bayes/gpstuff/
n8https://arxiv.org/abs/
n23https://github.com/GeoStat-Framework/
n26http://
dbpedia-frhttp://fr.dbpedia.org/resource/
n4http://commons.wikimedia.org/wiki/Special:FilePath/
n32https://github.com/SheffieldML/
dctermshttp://purl.org/dc/terms/
rdfshttp://www.w3.org/2000/01/rdf-schema#
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
n9http://dbpedia.org/resource/File:
n44http://sourceforge.net/projects/
dbphttp://dbpedia.org/property/
n47http://au.mathworks.com/matlabcentral/fileexchange/38880:
xsdhhttp://www.w3.org/2001/XMLSchema#
n16http://www.gaussianprocess.org/gpml/code/matlab/doc/
n24https://github.com/ChristophJud/
dbpedia-ukhttp://uk.dbpedia.org/resource/
dbohttp://dbpedia.org/ontology/
dbpedia-pthttp://pt.dbpedia.org/resource/
dbpedia-huhttp://hu.dbpedia.org/resource/
dbpedia-jahttp://ja.dbpedia.org/resource/
dbchttp://dbpedia.org/resource/Category:
dbpedia-dehttp://de.dbpedia.org/resource/
dbpedia-plhttp://pl.dbpedia.org/resource/
dbpedia-ruhttp://ru.dbpedia.org/resource/
yagohttp://dbpedia.org/class/yago/
wikidatahttp://www.wikidata.org/entity/
goldhttp://purl.org/linguistics/gold/
yago-reshttp://yago-knowledge.org/resource/
n12https://global.dbpedia.org/id/
dbpedia-ithttp://it.dbpedia.org/resource/
provhttp://www.w3.org/ns/prov#
n49http://www.sumo.intec.ugent.be/
foafhttp://xmlns.com/foaf/0.1/
n43http://su.dbpedia.org/resource/
n37https://web.archive.org/web/20180826005000/https:/pdfs.semanticscholar.org/c9f2/
dbpedia-zhhttp://zh.dbpedia.org/resource/
n39http://videolectures.net/
n46https://github.com/Yelp/
dbpedia-fahttp://fa.dbpedia.org/resource/
dbpedia-eshttp://es.dbpedia.org/resource/
freebasehttp://rdf.freebase.com/ns/
n25http://www.uqlab.com/
owlhttp://www.w3.org/2002/07/owl#

Statements

Subject Item
dbr:Bayesian_optimization
dbo:wikiPageWikiLink
dbr:Gaussian_process
Subject Item
dbr:Rogue_wave
dbo:wikiPageWikiLink
dbr:Gaussian_process
Subject Item
dbr:Time_series
dbo:wikiPageWikiLink
dbr:Gaussian_process
Subject Item
dbr:Probabilistic_numerics
dbo:wikiPageWikiLink
dbr:Gaussian_process
Subject Item
dbr:Bayesian_interpretation_of_kernel_regularization
dbo:wikiPageWikiLink
dbr:Gaussian_process
Subject Item
dbr:Bayesian_quadrature
dbo:wikiPageWikiLink
dbr:Gaussian_process
Subject Item
dbr:Residence_time_(statistics)
dbo:wikiPageWikiLink
dbr:Gaussian_process
Subject Item
dbr:Donsker's_theorem
dbo:wikiPageWikiLink
dbr:Gaussian_process
Subject Item
dbr:Doubly_stochastic_model
dbo:wikiPageWikiLink
dbr:Gaussian_process
Subject Item
dbr:Indoor_positioning_system
dbo:wikiPageWikiLink
dbr:Gaussian_process
Subject Item
dbr:Information_field_theory
dbo:wikiPageWikiLink
dbr:Gaussian_process
Subject Item
dbr:Interpolation
dbo:wikiPageWikiLink
dbr:Gaussian_process
Subject Item
dbr:Interval_predictor_model
dbo:wikiPageWikiLink
dbr:Gaussian_process
Subject Item
dbr:GP
dbo:wikiPageWikiLink
dbr:Gaussian_process
dbo:wikiPageDisambiguates
dbr:Gaussian_process
Subject Item
dbr:List_of_probability_topics
dbo:wikiPageWikiLink
dbr:Gaussian_process
Subject Item
dbr:Rice's_formula
dbo:wikiPageWikiLink
dbr:Gaussian_process
Subject Item
dbr:Variogram
dbo:wikiPageWikiLink
dbr:Gaussian_process
Subject Item
dbr:Whittle_likelihood
dbo:wikiPageWikiLink
dbr:Gaussian_process
Subject Item
dbr:Continuous_gusts
dbo:wikiPageWikiLink
dbr:Gaussian_process
Subject Item
dbr:Gaussian_noise
dbo:wikiPageWikiLink
dbr:Gaussian_process
Subject Item
dbr:Gaussian_process_approximations
dbo:wikiPageWikiLink
dbr:Gaussian_process
Subject Item
dbr:Gaussian_process_emulator
dbo:wikiPageWikiLink
dbr:Gaussian_process
Subject Item
dbr:Gaussian_random_field
dbo:wikiPageWikiLink
dbr:Gaussian_process
Subject Item
dbr:Gauss–Markov_process
dbo:wikiPageWikiLink
dbr:Gaussian_process
Subject Item
dbr:Low-rank_matrix_approximations
dbo:wikiPageWikiLink
dbr:Gaussian_process
Subject Item
dbr:Ornstein–Uhlenbeck_process
dbo:wikiPageWikiLink
dbr:Gaussian_process
Subject Item
dbr:Empirical_distribution_function
dbo:wikiPageWikiLink
dbr:Gaussian_process
Subject Item
dbr:Gaussian_process
rdf:type
yago:Ability105616246 yago:Cognition100023271 dbo:Software yago:Method105660268 yago:Hypothesis105888929 yago:Abstraction100002137 yago:WikicatNon-parametricBayesianMethods yago:Content105809192 yago:WikicatStochasticProcesses yago:StochasticProcess113561896 yago:PsychologicalFeature100023100 yago:Concept105835747 owl:Thing yago:WikicatKernelMethodsForMachineLearning yago:Model105890249 yago:Know-how105616786 yago:Idea105833840
rdfs:label
Processo gaussiano ガウス過程 Proces gaussowski Gauß-Prozess Gaussian process Proceso de Gauss Гауссівський процес 高斯过程 Processus gaussien Гауссовский процесс Processo gaussiano
rdfs:comment
In probability theory and statistics, a Gaussian process is a stochastic process (a collection of random variables indexed by time or space), such that every finite collection of those random variables has a multivariate normal distribution, i.e. every finite linear combination of them is normally distributed. The distribution of a Gaussian process is the joint distribution of all those (infinitely many) random variables, and as such, it is a distribution over functions with a continuous domain, e.g. time or space. Гауссівський процес в теорії випадкових процесів — це процес, чиї гауссовські. Ein Gaußprozess (nach Carl Friedrich Gauß) ist in der Wahrscheinlichkeitstheorie ein stochastischer Prozess, bei dem jede endliche Teilmenge von Zufallsvariablen mehrdimensional normalverteilt (gaußverteilt) ist. Ein Gaußprozess repräsentiert im Allgemeinen eine Funktion, deren Funktionswerte aufgrund eines Mangels an Information nur mit bestimmten Unsicherheiten und Wahrscheinlichkeiten modelliert werden können. Konstruiert wird er aus geeigneten Funktionen der Erwartungswerte, Varianzen und Kovarianzen und beschreibt damit die Funktionswerte als ein Kontinuum aus korrelierten Zufallsvariablen in Form einer unendlichdimensionalen Normalverteilung. Ein Gaußprozess ist somit eine Wahrscheinlichkeitsverteilung von Funktionen. Eine Stichprobe daraus ergibt eine zufällige Funktion mit bestimmt Un proceso de Gauss es un proceso estocástico que muestra en el tiempo de manera tal que no afecte la finitud de una combinación lineal que se tenga (o más generalmente cualquier funcional lineal de la función de muestra ), combinación lineal que se distribuirá normalmente. 在概率论和统计学中,高斯过程(英語:Gaussian process)是观测值出现在一个连续域(例如时间或空间)的随机过程。在高斯过程中,连续输入空间中每个点都是与一个正态分布的随机变量相关联。此外,这些随机变量的每个有限集合都有一个多元正态分布,换句话说他们的任意有限线性组合是一个正态分布。高斯过程的分布是所有那些(無限多个)随机变量的联合分布,正因如此,它是连续域(例如时间或空间)上函数的分布。 高斯過程被認為是一種機器學習算法,是以方式,利用點與點之間同質性的度量作為,以從輸入的訓練數據預測未知點的值。其預測結果不僅包含該點的值,而同時包含不確定性的資料-它的一維高斯分佈(即該點的邊際分佈)。 對於某些核函數,可以使用矩陣代數(見條目)來計算預測值。若核函數有代數參數,則通常使用軟體以擬合高斯過程的模型。 由於高斯過程是基於高斯分佈(正態分佈)的概念,故其以卡爾·弗里德里希·高斯為名。可以把高斯過程看成多元正態分佈的無限維廣義延伸。 高斯過程常用於統計建模中,而使用高斯過程的模型可以得到高斯過程的屬性。举例来说,如果把一隨機過程用高斯過程建模,我们可以显示求出各種導出量的分布,这些导出量可以是例如隨機過程在一定範圍次數內的平均值,及使用小範圍採樣次數及採樣值進行平均值預測的誤差。 Proces gaussowski – proces stochastyczny którego rozkłady skończenie wymiarowe są gaussowskie. Najbardziej znanymi przykładami procesów gaussowskich są proces Wienera i most Browna. In teoria delle probabilità un processo gaussiano è un processo stocastico f(x) tale che prendendo un qualsiasi numero finito di variabili aleatorie, dalla collezione che forma il processo aleatorio stesso, esse hanno una distribuzione di probabilità congiunta gaussiana. Un processo gaussiano è specificato interamente dalla sua media (x) e dalla covarianza (x,x'), e viene indicato nel modo seguente: En théorie des probabilités et en statistiques, un processus gaussien est un processus stochastique (une collection de variables aléatoires avec un index temporel ou spatial) de telle sorte que chaque collection finie de ces variables aléatoires suit une loi normale multidimensionnelle ; c'est-à-dire que chaque combinaison linéaire est normalement distribuée. La distribution d'un processus gaussien est la loi jointe de toutes ces variables aléatoires. Ses réalisations sont donc des fonctions avec un domaine continu. ガウス過程(ガウス-かてい、英: Gaussian process)は連続時間確率過程の一種である。この概念はカール・フリードリッヒ・ガウスの名にちなんでいるが、それは単に正規分布がガウス分布とも呼ばれるためであり、しかも正規分布はガウスが最初に研究したというわけでもない。いくつかの文献(たとえば下記のSimonの著書)では、確率変数 Xt の期待値が 0 であることを仮定する場合もある。 Em teoria da probabilidade e estatística, um processo gaussiano é um modelo estatístico em que as observações ocorrem em um domínio contínuo, por exemplo, tempo ou espaço. Em um processo gaussiano, cada ponto em algum espaço de entrada contínua está associada com uma variável aleatória com distribuição normal. Além disso, cada conjunto finito dessas variáveis ​​aleatórias tem uma distribuição normal multivariada. A distribuição de um processo gaussiano é a distribuição conjunta de todas as infinitas variáveis aleatórias, e, como tal, é uma distribuição de funções com um domínio contínuo. В теории вероятностей и статистике гауссовский процесс — это стохастический процесс (совокупность случайных величин, индексированных некоторым параметром, чаще всего временем или координатами), такой что любой конечный набор этих случайных величин имеет многомерное нормальное распределение, то есть любая конечная линейная комбинация из них нормально распределена. Распределение гауссовского процесса – это совместное распределение всех его случайных величин и, в силу чего, является распределением функций с непрерывной областью определения.
rdfs:seeAlso
dbr:Gaussian_process_approximations
foaf:depiction
n4:Autocorrelation_of_a_random_lacunary_Fourier_series.svg n4:Gaussian_Process_Regression.png n4:Gaussian_process_draws_from_prior_distribution.png n4:Regressions_sine_demo.svg
dcterms:subject
dbc:Kernel_methods_for_machine_learning dbc:Nonparametric_Bayesian_statistics dbc:Normal_distribution dbc:Stochastic_processes
dbo:wikiPageID
302944
dbo:wikiPageRevisionID
1123120688
dbo:wikiPageWikiLink
dbr:Matrix_(mathematics) dbr:Standard_deviation n9:Autocorrelation_of_a_random_lacunary_Fourier_series.svg dbr:Stationary_process dbr:Smoothness dbr:Statistical_parameter dbr:Empirical_Bayes dbr:Multivariate_normal_distribution dbr:Mean_(mathematics) dbr:Prior_probability dbr:Function_(mathematics) dbr:Statistics dbr:Deep_learning dbr:Nonlinear_mixed-effects_model dbr:Reproducing_kernel_Hilbert_space dbr:Carl_Friedrich_Gauss dbr:Kriging dbr:Andrey_Kolmogorov dbr:Lacunary_function dbr:Kronecker_delta dbr:Prior_probability_distribution dbr:Bayes_linear_statistics dbr:Closed-form_expression dbr:Statistical_model dbr:Imaginary_unit dbr:Bayesian_inference dbr:Artificial_neural_network dbr:Gradient-enhanced_kriging dbr:Integration_by_substitution dbr:Statistical_independence n9:Gaussian_Process_Regression.png dbr:Normal_distribution n9:Gaussian_process_draws_from_prior_distribution.png dbr:Artificial_neuron dbr:Multivariate_Gaussian dbr:Random_process dbc:Kernel_methods_for_machine_learning dbr:Stationary_increments dbr:Continuous_stochastic_process dbr:Karhunen–Loève_theorem dbr:Gaussian_process_approximations dbr:Homogeneous dbr:Covariance_function dbr:Richard_M._Dudley dbr:Stochastic_kernel dbr:Ornstein–Uhlenbeck_process dbr:Autocovariance dbr:Linear_combination dbr:Maximum_a_posteriori dbc:Nonparametric_Bayesian_statistics dbr:Random_variable dbr:Student's_t-distribution dbr:Wiener_process dbr:Interpolation dbr:Periodic_function dbr:Gaussian_free_field dbr:Kernel_methods_for_vector_output dbr:Characteristic_function_(probability_theory) dbr:Gram_matrix dbr:Isotropy dbr:Modified_Bessel_function dbr:Probabilistic_numerics dbc:Normal_distribution dbr:Stochastic_process dbr:Bayesian_interpretation_of_regularization dbr:Indexed_family dbr:Fractional_Brownian_motion dbr:Gauss–Markov_process dbr:Covariance n9:Regressions_sine_demo.svg dbr:Sampling_(mathematics) dbr:If_and_only_if dbr:Gamma_function dbr:Bayesian_network dbc:Stochastic_processes dbr:Brownian_bridge dbr:Probability_theory dbr:White_noise dbr:Xavier_Fernique dbr:Finite_set dbr:Lawrence_Shepp dbr:Joint_distribution dbr:Marginal_likelihood
dbo:wikiPageExternalLink
n8:1505.02965 n16: n23:GSTools n24:GPR n25: n26:scikit-learn.org n32:GPy n33:917_Rapport.pdf n26:www.GaussianProcess.org n36: n37:1b84149991f4d547b3f0f625f710750ad8d9.pdf n39:gpip06_mackay_gpb n39:mlss07_rasmussen_bigp n39:epsrcws08_rasmussen_lgp n42:KriKit n44:kriging n46:MOE n47: n49:ooDACE n50:
owl:sameAs
dbpedia-zh:高斯过程 n12:VZrk dbpedia-fa:فرایند_گاوسی dbpedia-pl:Proces_gaussowski dbpedia-es:Proceso_de_Gauss dbpedia-ja:ガウス過程 dbpedia-pt:Processo_gaussiano dbpedia-de:Gauß-Prozess dbpedia-uk:Гауссівський_процес freebase:m.01s3p6 yago-res:Gaussian_process wikidata:Q1496376 dbpedia-it:Processo_gaussiano dbpedia-hu:Gauss-folyamat n43:Prosés_Gauss dbpedia-ru:Гауссовский_процесс dbpedia-fr:Processus_gaussien
dbp:wikiPageUsesTemplate
dbt:Block_indent dbt:Mvar dbt:See_also dbt:Main dbt:Rp dbt:Tmath dbt:Further dbt:Math_theorem dbt:Stochastic_processes dbt:Authority_control dbt:Short_description dbt:Vanchor dbt:Reflist dbt:Math
dbo:thumbnail
n4:Gaussian_process_draws_from_prior_distribution.png?width=300
dbp:em
1.5
dbp:text
there exists such that is monotone on
dbo:abstract
Em teoria da probabilidade e estatística, um processo gaussiano é um modelo estatístico em que as observações ocorrem em um domínio contínuo, por exemplo, tempo ou espaço. Em um processo gaussiano, cada ponto em algum espaço de entrada contínua está associada com uma variável aleatória com distribuição normal. Além disso, cada conjunto finito dessas variáveis ​​aleatórias tem uma distribuição normal multivariada. A distribuição de um processo gaussiano é a distribuição conjunta de todas as infinitas variáveis aleatórias, e, como tal, é uma distribuição de funções com um domínio contínuo. Visto como um algoritmo de aprendizado de máquina, um processo gaussiano utiliza "aprendizagem preguiçosa" e uma medida da similaridade entre os pontos (a função kernel) para prever o valor de um ponto invisível a partir de dados de treinamento. A previsão não é apenas uma estimativa para esse ponto, mas tem também a informação da incerteza. É uma distribuição gaussiana unidimensional (que é uma distribuição marginal nesse ponto). Em algumas funções kernel, a álgebra de matrizes pode ser usada para calcular as previsões, como descrito no artigo krigagem. Quando um kernel parametrizado é utilizado, o software de otimização é tipicamente usado para ajustar um modelo de processo gaussiano. O conceito de processos gaussianos tem o nome de Carl Friedrich Gauss, porque se baseia na noção da distribuição gaussiana (distribuição normal). Processos gaussianos podem ser visto como uma generalização infinito-dimensional de distribuições normais multivariadas. Processos gaussianos são úteis na modelagem estatística, beneficiando-se de propriedades herdadas do normal. Por exemplo, se um processo aleatório é modelado como um processo gaussiano, as distribuições de várias derivadas de grandezas podem ser obtidas de forma explícita. Tais grandezas incluem o valor médio do processo em um dado intervalo de tempo e o erro na estimativa da média usando valores de amostra de um curto intervalo de tempo. 在概率论和统计学中,高斯过程(英語:Gaussian process)是观测值出现在一个连续域(例如时间或空间)的随机过程。在高斯过程中,连续输入空间中每个点都是与一个正态分布的随机变量相关联。此外,这些随机变量的每个有限集合都有一个多元正态分布,换句话说他们的任意有限线性组合是一个正态分布。高斯过程的分布是所有那些(無限多个)随机变量的联合分布,正因如此,它是连续域(例如时间或空间)上函数的分布。 高斯過程被認為是一種機器學習算法,是以方式,利用點與點之間同質性的度量作為,以從輸入的訓練數據預測未知點的值。其預測結果不僅包含該點的值,而同時包含不確定性的資料-它的一維高斯分佈(即該點的邊際分佈)。 對於某些核函數,可以使用矩陣代數(見條目)來計算預測值。若核函數有代數參數,則通常使用軟體以擬合高斯過程的模型。 由於高斯過程是基於高斯分佈(正態分佈)的概念,故其以卡爾·弗里德里希·高斯為名。可以把高斯過程看成多元正態分佈的無限維廣義延伸。 高斯過程常用於統計建模中,而使用高斯過程的模型可以得到高斯過程的屬性。举例来说,如果把一隨機過程用高斯過程建模,我们可以显示求出各種導出量的分布,这些导出量可以是例如隨機過程在一定範圍次數內的平均值,及使用小範圍採樣次數及採樣值進行平均值預測的誤差。 Гауссівський процес в теорії випадкових процесів — це процес, чиї гауссовські. En théorie des probabilités et en statistiques, un processus gaussien est un processus stochastique (une collection de variables aléatoires avec un index temporel ou spatial) de telle sorte que chaque collection finie de ces variables aléatoires suit une loi normale multidimensionnelle ; c'est-à-dire que chaque combinaison linéaire est normalement distribuée. La distribution d'un processus gaussien est la loi jointe de toutes ces variables aléatoires. Ses réalisations sont donc des fonctions avec un domaine continu. Un processus stochastique X sur un ensemble fini de sites S est dit gaussien si, pour toute partie finie A⊂S et toute suite réelle (a) sur A, ∑s∈A as X(s) est une variable gaussienne. Posant mA et ΣA la moyenne et la covariance de X sur A, si ΣA est inversible, alors XA = (Xs,s∈A) admet pour densité (ou vraisemblance) par rapport à la mesure de Lebesgue sur ℝcard(A) : В теории вероятностей и статистике гауссовский процесс — это стохастический процесс (совокупность случайных величин, индексированных некоторым параметром, чаще всего временем или координатами), такой что любой конечный набор этих случайных величин имеет многомерное нормальное распределение, то есть любая конечная линейная комбинация из них нормально распределена. Распределение гауссовского процесса – это совместное распределение всех его случайных величин и, в силу чего, является распределением функций с непрерывной областью определения. Если рассматривать гауссовский процесс как способ решения задач машинного обучения, то используется ленивое обучение и мера подобия между точками (функция ядра) для получения прогноза значения невидимой точки из обучающей выборки. В понятие прогноза, помимо самой оценки точки, входит информация о неопределенности — одномерное гауссовское распределение. Для вычисления прогнозов некоторых функций ядра используют метод матричной алгебры, кригинг. Гауссовский процесс назван так в честь Карла Фридриха Гаусса, поскольку в его основе лежит понятие гауссовского распределения (нормального распределения). Гауссовский процесс может рассматриваться как бесконечномерное обобщение многомерных нормальных распределений. Эти процессы применяются в статистическом моделировании; в частности используются свойства нормальности. Например, если случайный процесс моделируется как гауссовский, то распределения различных производных величин, такие как среднее значение процесса в течение определенного промежутка времени и погрешность его оценки с использованием выборки значений, могут быть получены явно. In probability theory and statistics, a Gaussian process is a stochastic process (a collection of random variables indexed by time or space), such that every finite collection of those random variables has a multivariate normal distribution, i.e. every finite linear combination of them is normally distributed. The distribution of a Gaussian process is the joint distribution of all those (infinitely many) random variables, and as such, it is a distribution over functions with a continuous domain, e.g. time or space. The concept of Gaussian processes is named after Carl Friedrich Gauss because it is based on the notion of the Gaussian distribution (normal distribution). Gaussian processes can be seen as an infinite-dimensional generalization of multivariate normal distributions. Gaussian processes are useful in statistical modelling, benefiting from properties inherited from the normal distribution. For example, if a random process is modelled as a Gaussian process, the distributions of various derived quantities can be obtained explicitly. Such quantities include the average value of the process over a range of times and the error in estimating the average using sample values at a small set of times. While exact models often scale poorly as the amount of data increases, multiple approximation methods have been developed which often retain good accuracy while drastically reducing computation time. Un proceso de Gauss es un proceso estocástico que muestra en el tiempo de manera tal que no afecte la finitud de una combinación lineal que se tenga (o más generalmente cualquier funcional lineal de la función de muestra ), combinación lineal que se distribuirá normalmente. Ein Gaußprozess (nach Carl Friedrich Gauß) ist in der Wahrscheinlichkeitstheorie ein stochastischer Prozess, bei dem jede endliche Teilmenge von Zufallsvariablen mehrdimensional normalverteilt (gaußverteilt) ist. Ein Gaußprozess repräsentiert im Allgemeinen eine Funktion, deren Funktionswerte aufgrund eines Mangels an Information nur mit bestimmten Unsicherheiten und Wahrscheinlichkeiten modelliert werden können. Konstruiert wird er aus geeigneten Funktionen der Erwartungswerte, Varianzen und Kovarianzen und beschreibt damit die Funktionswerte als ein Kontinuum aus korrelierten Zufallsvariablen in Form einer unendlichdimensionalen Normalverteilung. Ein Gaußprozess ist somit eine Wahrscheinlichkeitsverteilung von Funktionen. Eine Stichprobe daraus ergibt eine zufällige Funktion mit bestimmten bevorzugten Eigenschaften. ガウス過程(ガウス-かてい、英: Gaussian process)は連続時間確率過程の一種である。この概念はカール・フリードリッヒ・ガウスの名にちなんでいるが、それは単に正規分布がガウス分布とも呼ばれるためであり、しかも正規分布はガウスが最初に研究したというわけでもない。いくつかの文献(たとえば下記のSimonの著書)では、確率変数 Xt の期待値が 0 であることを仮定する場合もある。 Proces gaussowski – proces stochastyczny którego rozkłady skończenie wymiarowe są gaussowskie. Najbardziej znanymi przykładami procesów gaussowskich są proces Wienera i most Browna. In teoria delle probabilità un processo gaussiano è un processo stocastico f(x) tale che prendendo un qualsiasi numero finito di variabili aleatorie, dalla collezione che forma il processo aleatorio stesso, esse hanno una distribuzione di probabilità congiunta gaussiana. Un processo gaussiano è specificato interamente dalla sua media (x) e dalla covarianza (x,x'), e viene indicato nel modo seguente: Talvolta si assume che la media sia pari a zero e spesso si sceglie come insieme indice quello temporale cosicché il processo gaussiano risulti definito sul tempo. Accade di frequente nell'ambito delle telecomunicazioni, dove vari segnali vengono interpretati come processi gaussiani (ad esempio il rumore gaussiano).
gold:hypernym
dbr:Distribution
prov:wasDerivedFrom
wikipedia-en:Gaussian_process?oldid=1123120688&ns=0
dbo:wikiPageLength
39514
foaf:isPrimaryTopicOf
wikipedia-en:Gaussian_process
Subject Item
dbr:Eric_Agol
dbo:wikiPageWikiLink
dbr:Gaussian_process
Subject Item
dbr:Pregaussian_class
dbo:wikiPageWikiLink
dbr:Gaussian_process
Subject Item
dbr:Applications_of_Gaussian_processes
dbo:wikiPageWikiLink
dbr:Gaussian_process
dbo:wikiPageRedirects
dbr:Gaussian_process
Subject Item
dbr:Local_time_(mathematics)
dbo:wikiPageWikiLink
dbr:Gaussian_process
Subject Item
dbr:Steve_Young_(software_engineer)
dbo:wikiPageWikiLink
dbr:Gaussian_process
Subject Item
dbr:Sudipto_Banerjee
dbo:wikiPageWikiLink
dbr:Gaussian_process
dbp:knownFor
dbr:Gaussian_process
dbo:knownFor
dbr:Gaussian_process
Subject Item
dbr:Comparison_of_Gaussian_process_software
dbo:wikiPageWikiLink
dbr:Gaussian_process
Subject Item
dbr:Computer_experiment
dbo:wikiPageWikiLink
dbr:Gaussian_process
Subject Item
dbr:Zoubin_Ghahramani
dbo:wikiPageWikiLink
dbr:Gaussian_process
Subject Item
dbr:Empirical_process
dbo:wikiPageWikiLink
dbr:Gaussian_process
Subject Item
dbr:Kernel_embedding_of_distributions
dbo:wikiPageWikiLink
dbr:Gaussian_process
Subject Item
dbr:Kernel_method
dbo:wikiPageWikiLink
dbr:Gaussian_process
Subject Item
dbr:Kernel_methods_for_vector_output
dbo:wikiPageWikiLink
dbr:Gaussian_process
Subject Item
dbr:Kriging
dbo:wikiPageWikiLink
dbr:Gaussian_process
Subject Item
dbr:Gaussian_Process
dbo:wikiPageWikiLink
dbr:Gaussian_process
dbo:wikiPageRedirects
dbr:Gaussian_process
Subject Item
dbr:Polynomial_chaos
dbo:wikiPageWikiLink
dbr:Gaussian_process
Subject Item
dbr:Student's_t-distribution
dbo:wikiPageWikiLink
dbr:Gaussian_process
Subject Item
dbr:Matérn_covariance_function
dbo:wikiPageWikiLink
dbr:Gaussian_process
Subject Item
dbr:Additive_white_Gaussian_noise
dbo:wikiPageWikiLink
dbr:Gaussian_process
Subject Item
dbr:Data_fusion
dbo:wikiPageWikiLink
dbr:Gaussian_process
Subject Item
dbr:WildMIDI
dbo:wikiPageWikiLink
dbr:Gaussian_process
Subject Item
dbr:Dudley's_theorem
dbo:wikiPageWikiLink
dbr:Gaussian_process
Subject Item
dbr:HYSPLIT
dbo:wikiPageWikiLink
dbr:Gaussian_process
Subject Item
dbr:Laplace's_approximation
dbo:wikiPageWikiLink
dbr:Gaussian_process
Subject Item
dbr:Large_deviations_of_Gaussian_random_functions
dbo:wikiPageWikiLink
dbr:Gaussian_process
Subject Item
dbr:Lawrence_Shepp
dbo:wikiPageWikiLink
dbr:Gaussian_process
Subject Item
dbr:Long-tail_traffic
dbo:wikiPageWikiLink
dbr:Gaussian_process
Subject Item
dbr:Mineral_resource_estimation
dbo:wikiPageWikiLink
dbr:Gaussian_process
Subject Item
dbr:Event-related_potential
dbo:wikiPageWikiLink
dbr:Gaussian_process
Subject Item
dbr:Normal_distribution
dbo:wikiPageWikiLink
dbr:Gaussian_process
Subject Item
dbr:Numerical_integration
dbo:wikiPageWikiLink
dbr:Gaussian_process
Subject Item
dbr:Flicker_noise
dbo:wikiPageWikiLink
dbr:Gaussian_process
Subject Item
dbr:Fractional_Brownian_motion
dbo:wikiPageWikiLink
dbr:Gaussian_process
Subject Item
dbr:Geostatistics
dbo:wikiPageWikiLink
dbr:Gaussian_process
Subject Item
dbr:Gradient-enhanced_kriging
dbo:wikiPageWikiLink
dbr:Gaussian_process
Subject Item
dbr:Komlós–Major–Tusnády_approximation
dbo:wikiPageWikiLink
dbr:Gaussian_process
Subject Item
dbr:Schur_complement
dbo:wikiPageWikiLink
dbr:Gaussian_process
Subject Item
dbr:List_of_things_named_after_Carl_Friedrich_Gauss
dbo:wikiPageWikiLink
dbr:Gaussian_process
Subject Item
dbr:Rayleigh_fading
dbo:wikiPageWikiLink
dbr:Gaussian_process
Subject Item
dbr:Relevance_vector_machine
dbo:wikiPageWikiLink
dbr:Gaussian_process
Subject Item
dbr:Time_reversibility
dbo:wikiPageWikiLink
dbr:Gaussian_process
Subject Item
dbr:HeuristicLab
dbo:wikiPageWikiLink
dbr:Gaussian_process
Subject Item
dbr:Jacques_Neveu
dbo:wikiPageWikiLink
dbr:Gaussian_process
Subject Item
dbr:Covariance_function
dbo:wikiPageWikiLink
dbr:Gaussian_process
Subject Item
dbr:Cox_process
dbo:wikiPageWikiLink
dbr:Gaussian_process
Subject Item
dbr:Wiener_process
dbo:wikiPageWikiLink
dbr:Gaussian_process
Subject Item
dbr:Autoregressive_model
dbo:wikiPageWikiLink
dbr:Gaussian_process
Subject Item
dbr:Borell–TIS_inequality
dbo:wikiPageWikiLink
dbr:Gaussian_process
Subject Item
dbr:Bussgang_theorem
dbo:wikiPageWikiLink
dbr:Gaussian_process
Subject Item
dbr:Frequency_of_exceedance
dbo:wikiPageWikiLink
dbr:Gaussian_process
Subject Item
dbr:Kosambi–Karhunen–Loève_theorem
dbo:wikiPageWikiLink
dbr:Gaussian_process
Subject Item
dbr:Brownian_dynamics
dbo:wikiPageWikiLink
dbr:Gaussian_process
Subject Item
dbr:Brownian_surface
dbo:wikiPageWikiLink
dbr:Gaussian_process
Subject Item
dbr:Neil_Lawrence
dbo:wikiPageWikiLink
dbr:Gaussian_process
dbo:academicDiscipline
dbr:Gaussian_process
Subject Item
dbr:Catalog_of_articles_in_probability_theory
dbo:wikiPageWikiLink
dbr:Gaussian_process
Subject Item
dbr:Christine_Shoemaker
dbo:wikiPageWikiLink
dbr:Gaussian_process
Subject Item
dbr:Uncertainty_quantification
dbo:wikiPageWikiLink
dbr:Gaussian_process
Subject Item
dbr:Neural_network_Gaussian_process
dbo:wikiPageWikiLink
dbr:Gaussian_process
Subject Item
dbr:List_of_statistics_articles
dbo:wikiPageWikiLink
dbr:Gaussian_process
Subject Item
dbr:List_of_stochastic_processes_topics
dbo:wikiPageWikiLink
dbr:Gaussian_process
Subject Item
dbr:Stein's_method
dbo:wikiPageWikiLink
dbr:Gaussian_process
Subject Item
dbr:Excursion_probability
dbo:wikiPageWikiLink
dbr:Gaussian_process
Subject Item
dbr:Multifidelity_simulation
dbo:wikiPageWikiLink
dbr:Gaussian_process
Subject Item
dbr:Multitask_optimization
dbo:wikiPageWikiLink
dbr:Gaussian_process
Subject Item
dbr:Stochastic_process
dbo:wikiPageWikiLink
dbr:Gaussian_process
Subject Item
dbr:Vecchia_approximation
dbo:wikiPageWikiLink
dbr:Gaussian_process
Subject Item
dbr:Noise-based_logic
dbo:wikiPageWikiLink
dbr:Gaussian_process
Subject Item
dbr:Nonlinear_dimensionality_reduction
dbo:wikiPageWikiLink
dbr:Gaussian_process
Subject Item
dbr:Nonlinear_mixed-effects_model
dbo:wikiPageWikiLink
dbr:Gaussian_process
Subject Item
dbr:Stochastic_optimization
dbo:wikiPageWikiLink
dbr:Gaussian_process
Subject Item
dbr:Outline_of_machine_learning
dbo:wikiPageWikiLink
dbr:Gaussian_process
Subject Item
dbr:Self-Similarity_of_Network_Data_Analysis
dbo:wikiPageWikiLink
dbr:Gaussian_process
Subject Item
dbr:Rough_path
dbo:wikiPageWikiLink
dbr:Gaussian_process
Subject Item
dbr:X̅_and_s_chart
dbo:wikiPageWikiLink
dbr:Gaussian_process
Subject Item
dbr:Supersymmetric_theory_of_stochastic_dynamics
dbo:wikiPageWikiLink
dbr:Gaussian_process
Subject Item
dbr:Gaussian_Processes
dbo:wikiPageWikiLink
dbr:Gaussian_process
dbo:wikiPageRedirects
dbr:Gaussian_process
Subject Item
dbr:Gaussian_processes
dbo:wikiPageWikiLink
dbr:Gaussian_process
dbo:wikiPageRedirects
dbr:Gaussian_process
Subject Item
dbr:Gaussian_stochastic_process
dbo:wikiPageWikiLink
dbr:Gaussian_process
dbo:wikiPageRedirects
dbr:Gaussian_process
Subject Item
wikipedia-en:Gaussian_process
foaf:primaryTopic
dbr:Gaussian_process