This HTML5 document contains 76 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n11http://ncatlab.org/nlab/show/
n10https://global.dbpedia.org/id/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
wikipedia-enhttp://en.wikipedia.org/wiki/
dbchttp://dbpedia.org/resource/Category:
provhttp://www.w3.org/ns/prov#
dbphttp://dbpedia.org/property/
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Lie_groupoid
rdfs:seeAlso
dbr:Differentiable_stack
Subject Item
dbr:Timeline_of_manifolds
dbo:wikiPageWikiLink
dbr:Differentiable_stack
Subject Item
dbr:Stack_(mathematics)
dbo:wikiPageWikiLink
dbr:Differentiable_stack
Subject Item
dbr:Localization_formula_for_equivariant_cohomology
dbo:wikiPageWikiLink
dbr:Differentiable_stack
Subject Item
dbr:Differentiable_stack
rdfs:label
Differentiable stack
rdfs:comment
A differentiable stack is the analogue in differential geometry of an algebraic stack in algebraic geometry. It can be described either as a stack over differentiable manifolds which admits an atlas, or as a Lie groupoid up to Morita equivalence. Differentiable stacks are particularly useful to handle spaces with singularities (i.e. orbifolds, leaf spaces, quotients), which appear naturally in differential geometry but are not differentiable manifolds. For instance, differentiable stacks have applications in foliation theory, Poisson geometry and twisted K-theory.
dcterms:subject
dbc:Differential_geometry
dbo:wikiPageID
41375260
dbo:wikiPageRevisionID
1108789025
dbo:wikiPageWikiLink
dbc:Differential_geometry dbr:Bicategories dbr:Gerbe dbr:Complex_of_sheaves dbr:Sheaf_(mathematics) dbr:De_Rham_cohomology dbr:Category_fibered_in_groupoids dbr:Morita_equivalence dbr:Band_(geometry) dbr:Compact_space dbr:Morphism dbr:Differential_geometry dbr:Surjective_function dbr:Foliation dbr:Poisson_geometry dbr:Slice_category dbr:Singularity_(mathematics) dbr:Commutative_diagram dbr:Groupoid dbr:Principal_bundle dbr:Finite_space dbr:Category_of_manifolds dbr:Topological_space dbr:Structure_sheaf dbr:Submersion_(mathematics) dbr:2_category dbr:Presheaf_(category_theory) dbr:Free_action dbr:Algebraic_geometry dbr:Differentiable_manifold dbr:Grothendieck_topology dbr:Vector_space dbr:Site_(mathematics) dbr:Prestack dbr:Jean_Giraud_(mathematician) dbr:Orbifold dbr:Algebraic_stack dbr:Classifying_space dbr:Proper_action dbr:Stack_(mathematics) dbr:Torsor dbr:Lie_groupoid dbr:Affine_scheme dbr:Fibred_product dbr:Quotient_stack dbr:Lie_group dbr:Lie_group_action dbr:Descent_(mathematics) dbr:Universal_bundle dbr:Foliation_theory dbr:Discrete_space dbr:Twisted_K-theory dbr:Fibred_category dbr:Exterior_derivative dbr:Subcategory dbr:2-functor
dbo:wikiPageExternalLink
n11:differentiable+stack
owl:sameAs
wikidata:Q16960732 freebase:m.0zrq83z n10:fdGy
dbp:wikiPageUsesTemplate
dbt:Reflist
dbo:abstract
A differentiable stack is the analogue in differential geometry of an algebraic stack in algebraic geometry. It can be described either as a stack over differentiable manifolds which admits an atlas, or as a Lie groupoid up to Morita equivalence. Differentiable stacks are particularly useful to handle spaces with singularities (i.e. orbifolds, leaf spaces, quotients), which appear naturally in differential geometry but are not differentiable manifolds. For instance, differentiable stacks have applications in foliation theory, Poisson geometry and twisted K-theory.
prov:wasDerivedFrom
wikipedia-en:Differentiable_stack?oldid=1108789025&ns=0
dbo:wikiPageLength
17675
foaf:isPrimaryTopicOf
wikipedia-en:Differentiable_stack
Subject Item
dbr:Orbifold
dbo:wikiPageWikiLink
dbr:Differentiable_stack
Subject Item
wikipedia-en:Differentiable_stack
foaf:primaryTopic
dbr:Differentiable_stack