dbo:abstract
|
- In mathematics—specifically, in functional analysis—a weakly measurable function taking values in a Banach space is a function whose composition with any element of the dual space is a measurable function in the usual (strong) sense. For separable spaces, the notions of weak and strong measurability agree. (en)
- 数学の、特に関数解析学の分野における、あるバナッハ空間に値を取る弱可測関数(じゃくかそくかんすう、英: weakly measurable function)とは、その双対空間の任意の元との合成が通常の(強い)意味での可測関数であるような関数のことを言う。可分空間においては、弱可測性と強可測性の概念は一致する。 (ja)
- 在数学中,特别是泛函分析中,如果一个在巴拿赫空间中取值的函数与其所在空间的对偶空间中的任意元素的复合是一般(强)意义下的可测函数,则该函数是弱可测函数。 对于可分空间,弱可测性和强可测性的概念是一致的。 (zh)
|
dbo:wikiPageExternalLink
| |
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 4282 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
dbp:mathStatement
|
- A function defined on a measure space and taking values in a Banach space is measurable if and only if it is both weakly measurable and almost surely separably valued. (en)
|
dbp:name
| |
dbp:note
| |
dbp:wikiPageUsesTemplate
| |
dcterms:subject
| |
gold:hypernym
| |
rdf:type
| |
rdfs:comment
|
- In mathematics—specifically, in functional analysis—a weakly measurable function taking values in a Banach space is a function whose composition with any element of the dual space is a measurable function in the usual (strong) sense. For separable spaces, the notions of weak and strong measurability agree. (en)
- 数学の、特に関数解析学の分野における、あるバナッハ空間に値を取る弱可測関数(じゃくかそくかんすう、英: weakly measurable function)とは、その双対空間の任意の元との合成が通常の(強い)意味での可測関数であるような関数のことを言う。可分空間においては、弱可測性と強可測性の概念は一致する。 (ja)
- 在数学中,特别是泛函分析中,如果一个在巴拿赫空间中取值的函数与其所在空间的对偶空间中的任意元素的复合是一般(强)意义下的可测函数,则该函数是弱可测函数。 对于可分空间,弱可测性和强可测性的概念是一致的。 (zh)
|
rdfs:label
|
- 弱可測関数 (ja)
- Weakly measurable function (en)
- 弱可测函数 (zh)
|
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageRedirects
of | |
is dbo:wikiPageWikiLink
of | |
is foaf:primaryTopic
of | |