dbo:abstract
|
- Der Satz von Stinespring, benannt nach , ist ein Satz aus dem mathematischen Teilgebiet der Funktionalanalysis aus dem Jahre 1955. Er besagt, dass vollständig positive Operatoren auf C*-Algebren im Wesentlichen Kompressionen von Hilbertraum-Darstellungen sind. (de)
- In mathematics, Stinespring's dilation theorem, also called Stinespring's factorization theorem, named after W. Forrest Stinespring, is a result from operator theory that represents any completely positive map on a C*-algebra as a composition of two completely positive maps each of which has a special form: 1.
* A *-representation of A on some auxiliary Hilbert space K followed by 2.
* An operator map of the form T → V*TV. Moreover, Stinespring's theorem is a structure theorem from a C*-algebra into the algebra of bounded operators on a Hilbert space. Completely positive maps are shown to be simple modifications of *-representations, or sometimes called *-homomorphisms. (en)
|
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 12474 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
dbp:wikiPageUsesTemplate
| |
dct:subject
| |
rdfs:comment
|
- Der Satz von Stinespring, benannt nach , ist ein Satz aus dem mathematischen Teilgebiet der Funktionalanalysis aus dem Jahre 1955. Er besagt, dass vollständig positive Operatoren auf C*-Algebren im Wesentlichen Kompressionen von Hilbertraum-Darstellungen sind. (de)
- In mathematics, Stinespring's dilation theorem, also called Stinespring's factorization theorem, named after W. Forrest Stinespring, is a result from operator theory that represents any completely positive map on a C*-algebra as a composition of two completely positive maps each of which has a special form: 1.
* A *-representation of A on some auxiliary Hilbert space K followed by 2.
* An operator map of the form T → V*TV. (en)
|
rdfs:label
|
- Satz von Stinespring (de)
- Stinespring dilation theorem (en)
|
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageRedirects
of | |
is dbo:wikiPageWikiLink
of | |
is foaf:primaryTopic
of | |