An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In mathematics, Stinespring's dilation theorem, also called Stinespring's factorization theorem, named after W. Forrest Stinespring, is a result from operator theory that represents any completely positive map on a C*-algebra as a composition of two completely positive maps each of which has a special form: 1. * A *-representation of A on some auxiliary Hilbert space K followed by 2. * An operator map of the form T → V*TV.

Property Value
dbo:abstract
  • Der Satz von Stinespring, benannt nach , ist ein Satz aus dem mathematischen Teilgebiet der Funktionalanalysis aus dem Jahre 1955. Er besagt, dass vollständig positive Operatoren auf C*-Algebren im Wesentlichen Kompressionen von Hilbertraum-Darstellungen sind. (de)
  • In mathematics, Stinespring's dilation theorem, also called Stinespring's factorization theorem, named after W. Forrest Stinespring, is a result from operator theory that represents any completely positive map on a C*-algebra as a composition of two completely positive maps each of which has a special form: 1. * A *-representation of A on some auxiliary Hilbert space K followed by 2. * An operator map of the form T → V*TV. Moreover, Stinespring's theorem is a structure theorem from a C*-algebra into the algebra of bounded operators on a Hilbert space. Completely positive maps are shown to be simple modifications of *-representations, or sometimes called *-homomorphisms. (en)
dbo:wikiPageID
  • 5092080 (xsd:integer)
dbo:wikiPageLength
  • 12474 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1016960722 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • Der Satz von Stinespring, benannt nach , ist ein Satz aus dem mathematischen Teilgebiet der Funktionalanalysis aus dem Jahre 1955. Er besagt, dass vollständig positive Operatoren auf C*-Algebren im Wesentlichen Kompressionen von Hilbertraum-Darstellungen sind. (de)
  • In mathematics, Stinespring's dilation theorem, also called Stinespring's factorization theorem, named after W. Forrest Stinespring, is a result from operator theory that represents any completely positive map on a C*-algebra as a composition of two completely positive maps each of which has a special form: 1. * A *-representation of A on some auxiliary Hilbert space K followed by 2. * An operator map of the form T → V*TV. (en)
rdfs:label
  • Satz von Stinespring (de)
  • Stinespring dilation theorem (en)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License