An Entity of Type: Function113783816, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In geometry, a sectrix of Maclaurin is defined as the curve swept out by the point of intersection of two lines which are each revolving at constant rates about different points called poles. Equivalently, a sectrix of Maclaurin can be defined as a curve whose equation in biangular coordinates is linear. The name is derived from the trisectrix of Maclaurin (named for Colin Maclaurin), which is a prominent member of the family, and their sectrix property, which means they can be used to divide an angle into a given number of equal parts. There are special cases known as arachnida or araneidans because of their spider-like shape, and Plateau curves after Joseph Plateau who studied them.

Property Value
dbo:abstract
  • En geometría, una sectriz de Maclaurin se define como la curva barrida por el punto de intersección de dos líneas rectas que giran cada una a tasas constantes alrededor de diferentes puntos llamados polos. De manera equivalente, una sectriz de Maclaurin se puede definir como una curva cuya ecuación en coordenadas biangulares es lineal. El nombre se deriva de la trisectriz de Maclaurin (llamada así en referencia al matemático Colin Maclaurin), que es un miembro prominente de la familia de curvas, y su propiedad como sectriz, lo que significa que se puede usar para dividir un ángulo en un número determinado de partes iguales. Hay casos especiales que también se conocen como arácnidas o aracneidas debido a su forma similar a una araña, y curvas de Plateau en referencia al matemático que las estudió, Joseph-Antoine Ferdinand Plateau.​ (es)
  • In geometry, a sectrix of Maclaurin is defined as the curve swept out by the point of intersection of two lines which are each revolving at constant rates about different points called poles. Equivalently, a sectrix of Maclaurin can be defined as a curve whose equation in biangular coordinates is linear. The name is derived from the trisectrix of Maclaurin (named for Colin Maclaurin), which is a prominent member of the family, and their sectrix property, which means they can be used to divide an angle into a given number of equal parts. There are special cases known as arachnida or araneidans because of their spider-like shape, and Plateau curves after Joseph Plateau who studied them. (en)
  • In de wiskunde vormen de Plateaucurves een door drie reële parameters geparametriseerde familie krommen, die een grote variëteit aan vormen vertoont. De curves zijn genoemd naar de Belgische natuur- en wiskundige Joseph Plateau. (nl)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 18635842 (xsd:integer)
dbo:wikiPageLength
  • 11779 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1093977809 (xsd:integer)
dbo:wikiPageWikiLink
dbp:title
  • Arachnida (en)
  • Plateau Curves (en)
dbp:urlname
  • Arachnida (en)
  • PlateauCurves (en)
dbp:wikiPageUsesTemplate
dcterms:subject
rdf:type
rdfs:comment
  • In geometry, a sectrix of Maclaurin is defined as the curve swept out by the point of intersection of two lines which are each revolving at constant rates about different points called poles. Equivalently, a sectrix of Maclaurin can be defined as a curve whose equation in biangular coordinates is linear. The name is derived from the trisectrix of Maclaurin (named for Colin Maclaurin), which is a prominent member of the family, and their sectrix property, which means they can be used to divide an angle into a given number of equal parts. There are special cases known as arachnida or araneidans because of their spider-like shape, and Plateau curves after Joseph Plateau who studied them. (en)
  • In de wiskunde vormen de Plateaucurves een door drie reële parameters geparametriseerde familie krommen, die een grote variëteit aan vormen vertoont. De curves zijn genoemd naar de Belgische natuur- en wiskundige Joseph Plateau. (nl)
  • En geometría, una sectriz de Maclaurin se define como la curva barrida por el punto de intersección de dos líneas rectas que giran cada una a tasas constantes alrededor de diferentes puntos llamados polos. De manera equivalente, una sectriz de Maclaurin se puede definir como una curva cuya ecuación en coordenadas biangulares es lineal. El nombre se deriva de la trisectriz de Maclaurin (llamada así en referencia al matemático Colin Maclaurin), que es un miembro prominente de la familia de curvas, y su propiedad como sectriz, lo que significa que se puede usar para dividir un ángulo en un número determinado de partes iguales. Hay casos especiales que también se conocen como arácnidas o aracneidas debido a su forma similar a una araña, y curvas de Plateau en referencia al matemático que las e (es)
rdfs:label
  • Sectriz de Maclaurin (es)
  • Plateaucurve (nl)
  • Sectrix of Maclaurin (en)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License