An Entity of Type: Abstraction100002137, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In quantum mechanics, the procedure of constructing eigenstates of total angular momentum out of eigenstates of separate angular momenta is called angular momentum coupling. For instance, the orbit and spin of a single particle can interact through spin–orbit interaction, in which case the complete physical picture must include spin–orbit coupling. Or two charged particles, each with a well-defined angular momentum, may interact by Coulomb forces, in which case coupling of the two one-particle angular momenta to a total angular momentum is a useful step in the solution of the two-particle Schrödinger equation.In both cases the separate angular momenta are no longer constants of motion, but the sum of the two angular momenta usually still is. Angular momentum coupling in atoms is of importa

Property Value
dbo:abstract
  • In quantum mechanics, the procedure of constructing eigenstates of total angular momentum out of eigenstates of separate angular momenta is called angular momentum coupling. For instance, the orbit and spin of a single particle can interact through spin–orbit interaction, in which case the complete physical picture must include spin–orbit coupling. Or two charged particles, each with a well-defined angular momentum, may interact by Coulomb forces, in which case coupling of the two one-particle angular momenta to a total angular momentum is a useful step in the solution of the two-particle Schrödinger equation.In both cases the separate angular momenta are no longer constants of motion, but the sum of the two angular momenta usually still is. Angular momentum coupling in atoms is of importance in atomic spectroscopy. Angular momentum coupling of electron spins is of importance in quantum chemistry. Also in the nuclear shell model angular momentum coupling is ubiquitous. In astronomy, spin–orbit coupling reflects the general law of conservation of angular momentum, which holds for celestial systems as well. In simple cases, the direction of the angular momentum vector is neglected, and the spin–orbit coupling is the ratio between the frequency with which a planet or other celestial body spins about its own axis to that with which it orbits another body. This is more commonly known as orbital resonance. Often, the underlying physical effects are tidal forces. (en)
  • En mecánica cuántica, el procedimiento de construir estados propios del momento angular total (estados de un sistema con valores bien definidos del momento angular) a partir de los estados propios de los momentos angulares individuales se llama acoplamiento de momentos angulares. Se utiliza cuando, a causa de una interacción física entre dos momentos angulares, estos ya no son constantes del movimiento independientes (sus valores individuales ya no siguen leyes de conservación), pero la suma de los dos momentos angulares normalmente sí lo es. Por ejemplo, el espín y el movimiento de un electrón pueden interaccionar por acoplamiento espín-órbita, en cuyo caso es útil acoplar sus momentos angulares orbital y de espín. O dos partículas cargadas, cada una con un momento angular bien definido, pueden interaccionar por fuerzas de Coulomb, y entonces es útil acoplar los momentos angulares de cada partícula resultando en un momento angular total, como paso para la resolución de la ecuación de Schrödinger de dos partículas. El acoplamiento de momentos angulares en átomos es importante para explicar experimentos de espectroscopia atómica. El acoplamiento de momentos angulares de espines electrónicos es de importancia en la parte de la química cuántica que estudia la magnetoquímica, y en la parte de la física cuántica que estudia la física de la materia condensada. En astronomía, el acoplamiento de momentos angulares refleja la ley general de conservación del momento angular que también es válida en objetos celestes. En casos simples, la dirección del vector momento angular se desprecia, y el acoplamiento espín-órbita es la razón entre la frecuencia con la que un planeta u otro cuerpo celeste rota sobre su propio eje y aquella con la que orbita alrededor de otro cuerpo. Esto se conoce comúnmente como resonancia orbital. Frecuentemente, los efectos físicos subyacentes son las fuerzas de marea. (es)
  • 각운동량 결합(영어: angular momentum coupling)은 서로 다른 각운동량들이 결합해 에너지를 변화시키는 것이다. (ko)
  • 量子力学において角運動量の合成(かくうんどうりょうのごうせい)とは、別々の角運動量の固有状態から全角運動量の固有状態を作ることである。 例えば1つの粒子の場合、軌道角運動量とスピン角運動量との間にはスピン軌道相互作用とよばれる相互作用が存在し、完全な物理的描像はスピン-軌道の合成を含まなければならない。 また、ある決まった角運動量を持つ2つの荷電粒子の場合、クーロン力によって相互作用をし、2つの1粒子角運動量で全角運動量を合成することは2粒子シュレディンガー方程式を解くにあたって有効である。 どちらの場合でも、別々の角運動量はもはや保存量ではなく、2つの角運動量を合成したものが保存量となる。 原子における角運動量の合成は、原子スペクトルにおいて重要である。電子スピンの角運動量の合成は、量子化学において重要である。シェルモデルにおいても、角運動量の合成はいたるところで現れる。 (ja)
  • Na mecânica quântica, o procedimento de construir "eigenstates" de momento angular total a partir de eigenstates de momentos angulares separados é chamado de acoplamento de momento angular. Por exemplo, a órbita e o giro de uma única partícula podem interagir por interação spin-órbita, caso em que a imagem física completa deve incluir o acoplamento spin-órbita. O acoplamento de momento angular de spins de elétrons é importante na química quântica. Também no modelo de invólucro nuclear, o acoplamento de momento angular é onipresente. Na astronomia, o acoplamento spin-órbita reflete a lei geral de conservação do momento angular, que também vale para os sistemas celestes. Em casos simples, a direção do vetor de momento angular é negligenciada, e o acoplamento spin-órbita é a razão entre a freqüência com que um planeta ou outro corpo celeste gira em torno de seu próprio eixo àquele com o qual ele orbita outro corpo. Isso é mais comumente conhecido como ressonância orbital. Frequentemente, os efeitos físicos subjacentes são forças de maré. (pt)
  • 在量子力学中,由独立角动量本征态构造出总角动量本征态的过程称为角动量耦合。例如,单个粒子的轨道和自旋会通过自旋-轨道作用相互影响,完整的物理图象必须包括自旋-轨道耦合。或者说,两个具有明确角动量定义的带电粒子会相互作用,这时将两个单粒子角动量耦合为总角动量,是解两粒子体系薛定谔方程的有用步骤。在这两种情况下,单独的角动量都不再是体系的守恒量,但两个角动量加和通常仍然是。在原子光谱中,原子角动量的耦合非常重要。电子自旋角动量的耦合对于量子化学非常重要。在核壳层模型中也普遍存在角动量耦合。 在天文学中,自旋轨道耦合同样反映了天体系统中角动量守恒的一般规律。在简单情况下,角动量的矢量方向被忽略,而自旋轨道耦合为行星等绕自身轴线旋转与绕另一个星体旋转的频率比值。这更多称作轨道共振。常见的相关物理效应为潮汐力。 本文集中讨论量子力学中的角动量耦合。 (zh)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 1277825 (xsd:integer)
dbo:wikiPageInterLanguageLink
dbo:wikiPageLength
  • 17649 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1108116875 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
gold:hypernym
rdf:type
rdfs:comment
  • 각운동량 결합(영어: angular momentum coupling)은 서로 다른 각운동량들이 결합해 에너지를 변화시키는 것이다. (ko)
  • 量子力学において角運動量の合成(かくうんどうりょうのごうせい)とは、別々の角運動量の固有状態から全角運動量の固有状態を作ることである。 例えば1つの粒子の場合、軌道角運動量とスピン角運動量との間にはスピン軌道相互作用とよばれる相互作用が存在し、完全な物理的描像はスピン-軌道の合成を含まなければならない。 また、ある決まった角運動量を持つ2つの荷電粒子の場合、クーロン力によって相互作用をし、2つの1粒子角運動量で全角運動量を合成することは2粒子シュレディンガー方程式を解くにあたって有効である。 どちらの場合でも、別々の角運動量はもはや保存量ではなく、2つの角運動量を合成したものが保存量となる。 原子における角運動量の合成は、原子スペクトルにおいて重要である。電子スピンの角運動量の合成は、量子化学において重要である。シェルモデルにおいても、角運動量の合成はいたるところで現れる。 (ja)
  • 在量子力学中,由独立角动量本征态构造出总角动量本征态的过程称为角动量耦合。例如,单个粒子的轨道和自旋会通过自旋-轨道作用相互影响,完整的物理图象必须包括自旋-轨道耦合。或者说,两个具有明确角动量定义的带电粒子会相互作用,这时将两个单粒子角动量耦合为总角动量,是解两粒子体系薛定谔方程的有用步骤。在这两种情况下,单独的角动量都不再是体系的守恒量,但两个角动量加和通常仍然是。在原子光谱中,原子角动量的耦合非常重要。电子自旋角动量的耦合对于量子化学非常重要。在核壳层模型中也普遍存在角动量耦合。 在天文学中,自旋轨道耦合同样反映了天体系统中角动量守恒的一般规律。在简单情况下,角动量的矢量方向被忽略,而自旋轨道耦合为行星等绕自身轴线旋转与绕另一个星体旋转的频率比值。这更多称作轨道共振。常见的相关物理效应为潮汐力。 本文集中讨论量子力学中的角动量耦合。 (zh)
  • In quantum mechanics, the procedure of constructing eigenstates of total angular momentum out of eigenstates of separate angular momenta is called angular momentum coupling. For instance, the orbit and spin of a single particle can interact through spin–orbit interaction, in which case the complete physical picture must include spin–orbit coupling. Or two charged particles, each with a well-defined angular momentum, may interact by Coulomb forces, in which case coupling of the two one-particle angular momenta to a total angular momentum is a useful step in the solution of the two-particle Schrödinger equation.In both cases the separate angular momenta are no longer constants of motion, but the sum of the two angular momenta usually still is. Angular momentum coupling in atoms is of importa (en)
  • En mecánica cuántica, el procedimiento de construir estados propios del momento angular total (estados de un sistema con valores bien definidos del momento angular) a partir de los estados propios de los momentos angulares individuales se llama acoplamiento de momentos angulares. Se utiliza cuando, a causa de una interacción física entre dos momentos angulares, estos ya no son constantes del movimiento independientes (sus valores individuales ya no siguen leyes de conservación), pero la suma de los dos momentos angulares normalmente sí lo es. Por ejemplo, el espín y el movimiento de un electrón pueden interaccionar por acoplamiento espín-órbita, en cuyo caso es útil acoplar sus momentos angulares orbital y de espín. O dos partículas cargadas, cada una con un momento angular bien definido, (es)
  • Na mecânica quântica, o procedimento de construir "eigenstates" de momento angular total a partir de eigenstates de momentos angulares separados é chamado de acoplamento de momento angular. Por exemplo, a órbita e o giro de uma única partícula podem interagir por interação spin-órbita, caso em que a imagem física completa deve incluir o acoplamento spin-órbita. O acoplamento de momento angular de spins de elétrons é importante na química quântica. Também no modelo de invólucro nuclear, o acoplamento de momento angular é onipresente. (pt)
rdfs:label
  • Angular momentum coupling (en)
  • Acoplamiento de momento angular (es)
  • 角運動量の合成 (ja)
  • 각운동량 결합 (ko)
  • Acoplamento de momento angular (pt)
  • 角动量耦合 (zh)
rdfs:seeAlso
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License