dbo:abstract
|
- In the mathematical fields of set theory and proof theory, the Takeuti–Feferman–Buchholz ordinal (TFBO) is a large countable ordinal, which acts as the limit of the range of Buchholz's psi function and Feferman's theta function. It was named by David Madore, after Gaisi Takeuti, Solomon Feferman and Wilfried Buchholz. It is written as using Buchholz's psi function, an ordinal collapsing function invented by Wilfried Buchholz, and in Feferman's theta function, an ordinal collapsing function invented by Solomon Feferman. It is the proof-theoretic ordinal of several formal theories:
* , a subsystem of second-order arithmetic
* -comprehension + transfinite induction
* IDω, the system of ω-times iterated inductive definitions Despite being one of the largest large countable ordinals and recursive ordinals, it is still vastly smaller than the proof-theoretic ordinal of ZFC. (en)
|
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 4956 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
dbp:wikiPageUsesTemplate
| |
dcterms:subject
| |
rdfs:comment
|
- In the mathematical fields of set theory and proof theory, the Takeuti–Feferman–Buchholz ordinal (TFBO) is a large countable ordinal, which acts as the limit of the range of Buchholz's psi function and Feferman's theta function. It was named by David Madore, after Gaisi Takeuti, Solomon Feferman and Wilfried Buchholz. It is written as using Buchholz's psi function, an ordinal collapsing function invented by Wilfried Buchholz, and in Feferman's theta function, an ordinal collapsing function invented by Solomon Feferman. It is the proof-theoretic ordinal of several formal theories: (en)
|
rdfs:label
|
- Takeuti–Feferman–Buchholz ordinal (en)
|
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageRedirects
of | |
is dbo:wikiPageWikiLink
of | |
is foaf:primaryTopic
of | |