In the geometry of hyperbolic 5-space, the order-4 24-cell honeycomb honeycomb is one of five paracompact regular space-filling tessellations (or honeycombs). It is called paracompact because it has infinite vertex figures, with all vertices as ideal points at infinity. With Schläfli symbol {3,4,3,3,4}, it has four 24-cell honeycombs around each cell. It is dual to the tesseractic honeycomb honeycomb.