An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In mathematics, a Borel measure μ on n-dimensional Euclidean space is called logarithmically concave (or log-concave for short) if, for any compact subsets A and B of and 0 < λ < 1, one has where λ A + (1 − λ) B denotes the Minkowski sum of λ A and (1 − λ) B.

Property Value
dbo:abstract
  • In mathematics, a Borel measure μ on n-dimensional Euclidean space is called logarithmically concave (or log-concave for short) if, for any compact subsets A and B of and 0 < λ < 1, one has where λ A + (1 − λ) B denotes the Minkowski sum of λ A and (1 − λ) B. (en)
  • In matematica, una misura di Borel μ in uno spazio euclideo n-dimensionale Rn è detta logaritmicamente concava se, dati due qualunque sottoinsiemi compatti A e B di Rn e dato λ tale che , si ha in cui λ A + (1 − λ) B denota la somma di Minkowski di λ A e (1 − λ) B. (it)
dbo:wikiPageID
  • 9368110 (xsd:integer)
dbo:wikiPageLength
  • 1863 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1068203245 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
rdfs:comment
  • In mathematics, a Borel measure μ on n-dimensional Euclidean space is called logarithmically concave (or log-concave for short) if, for any compact subsets A and B of and 0 < λ < 1, one has where λ A + (1 − λ) B denotes the Minkowski sum of λ A and (1 − λ) B. (en)
  • In matematica, una misura di Borel μ in uno spazio euclideo n-dimensionale Rn è detta logaritmicamente concava se, dati due qualunque sottoinsiemi compatti A e B di Rn e dato λ tale che , si ha in cui λ A + (1 − λ) B denota la somma di Minkowski di λ A e (1 − λ) B. (it)
rdfs:label
  • Misura logaritmicamente concava (it)
  • Logarithmically concave measure (en)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License