An Entity of Type: Abstraction100002137, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In mathematics, a sequence a = (a0, a1, ..., an) of nonnegative real numbers is called a logarithmically concave sequence, or a log-concave sequence for short, if ai2 ≥ ai−1ai+1 holds for 0 < i < n . Remark: some authors (explicitly or not) add two further conditions in the definition of log-concave sequences: * a is non-negative * a has no internal zeros; in other words, the support of a is an interval of Z. These conditions mirror the ones required for log-concave functions.

Property Value
dbo:abstract
  • In mathematics, a sequence a = (a0, a1, ..., an) of nonnegative real numbers is called a logarithmically concave sequence, or a log-concave sequence for short, if ai2 ≥ ai−1ai+1 holds for 0 < i < n . Remark: some authors (explicitly or not) add two further conditions in the definition of log-concave sequences: * a is non-negative * a has no internal zeros; in other words, the support of a is an interval of Z. These conditions mirror the ones required for log-concave functions. Sequences that fulfill the three conditions are also called Pólya Frequency sequences of order 2 (PF2 sequences). Refer to chapter 2 of for a discussion on the two notions. For instance, the sequence (1,1,0,0,1) satisfies the concavity inequalities but not the internal zeros condition. Examples of log-concave sequences are given by the binomial coefficients along any row of Pascal's triangle and the elementary symmetric means of a finite sequence of real numbers. (en)
  • In matematica, una n-pla, o rigorosamente una (n+1)-pla, di numeri reali non negativi è detta logaritmicamente concava, se per . Alcuni autori (esplicitamente o meno) aggiungono ulteriori ipotesi nella definizione di n-pla logaritmicamente concava, tra cui * non contiene zeri al suo interno. Queste ipotesi imitano quelle per le funzioni logaritmicamente concave. Le n-ple che soddisfano queste condizioni sono anche chiamate Pòlya Frequency sequences di ordine 2 (PF2 sequences). Consultare il capitolo 2 di per una discussione di queste nozioni.Per esempio, la sequenza verifica le disuguaglianze relative alla concavità ma non la condizione di non avere zeri interni. Esempi di sequenze logaritmicamente concave sono date dai coefficienti binomiali lungo una qualsiasi riga del triangolo di Pascal. (it)
dbo:thumbnail
dbo:wikiPageID
  • 31178109 (xsd:integer)
dbo:wikiPageLength
  • 2192 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1069146238 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
rdf:type
rdfs:comment
  • In mathematics, a sequence a = (a0, a1, ..., an) of nonnegative real numbers is called a logarithmically concave sequence, or a log-concave sequence for short, if ai2 ≥ ai−1ai+1 holds for 0 < i < n . Remark: some authors (explicitly or not) add two further conditions in the definition of log-concave sequences: * a is non-negative * a has no internal zeros; in other words, the support of a is an interval of Z. These conditions mirror the ones required for log-concave functions. (en)
  • In matematica, una n-pla, o rigorosamente una (n+1)-pla, di numeri reali non negativi è detta logaritmicamente concava, se per . Alcuni autori (esplicitamente o meno) aggiungono ulteriori ipotesi nella definizione di n-pla logaritmicamente concava, tra cui * non contiene zeri al suo interno. Queste ipotesi imitano quelle per le funzioni logaritmicamente concave. Esempi di sequenze logaritmicamente concave sono date dai coefficienti binomiali lungo una qualsiasi riga del triangolo di Pascal. (it)
rdfs:label
  • Ennupla logaritmicamente concava (it)
  • Logarithmically concave sequence (en)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License