An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In geometry, an infinite skew polygon or skew apeirogon is an infinite 2-polytope with vertices that are not all colinear. Infinite zig-zag skew polygons are 2-dimensional infinite skew polygons with vertices alternating between two parallel lines. Infinite helical polygons are 3-dimensional infinite skew polygons with vertices on the surface of a cylinder. Regular infinite skew polygons exist in the Petrie polygons of the affine and hyperbolic Coxeter groups. They are constructed a single operator as the composite of all the reflections of the Coxeter group.

Property Value
dbo:abstract
  • En geometría, un polígono alabeado infinito o apeirógono oblicuo es un 2-politopo infinito con vértices que no son todos colineales. Los polígonos oblicuos en zig-zag infinitos son formas bidimensionales con vértices que se alternan entre dos líneas rectas paralelas. A su vez, los polígonos helicoidales infinitos son formas tridimensionales con sus vértices en la superficie de un cilindro.​ Existen polígonos regulares oblicuos infinitos en los polígonos de Petrie de los grupos de Coxeter afines e hiperbólicos. Se construyen mediante un solo operador como el compuesto de todas las reflexiones del grupo de Coxeter. (es)
  • In geometry, an infinite skew polygon or skew apeirogon is an infinite 2-polytope with vertices that are not all colinear. Infinite zig-zag skew polygons are 2-dimensional infinite skew polygons with vertices alternating between two parallel lines. Infinite helical polygons are 3-dimensional infinite skew polygons with vertices on the surface of a cylinder. Regular infinite skew polygons exist in the Petrie polygons of the affine and hyperbolic Coxeter groups. They are constructed a single operator as the composite of all the reflections of the Coxeter group. (en)
  • 在幾何學中,扭歪無限邊形(英語:Skew apeirogon)又稱歪斜無限邊形、撓無限邊形是一種頂點並非全部共線的無限邊形。 較常討論及研究的扭歪無限邊形主要有兩個不同維度的形式,一種是二維的鋸齒歪斜無限邊形(英語:zig-zag skew apeirogons)其頂點交錯位於兩條互相平行的直線上,另一種是三維的螺旋歪斜無限邊形(英語:helical skew apeirogons)其頂點位於一個圓柱面上。二維中的鋸齒歪斜無限邊形可以看做是不斷,如三維空間的對稱的形狀。 正的扭歪無限邊形存在於仿射和雙曲考克斯特群的皮特里多邊形中。他們就如同合成所有考克斯特群鏡射的單一變換。 (zh)
dbo:thumbnail
dbo:wikiPageID
  • 45397992 (xsd:integer)
dbo:wikiPageLength
  • 7873 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1096727827 (xsd:integer)
dbo:wikiPageWikiLink
dbp:name
  • Regular zig-zag skew apeirogon (en)
dbp:schläfli
  • {∞}#{ } (en)
dbp:symmetry
  • D∞d, [2+,∞], (en)
dbp:wikiPageUsesTemplate
dcterms:subject
rdfs:comment
  • In geometry, an infinite skew polygon or skew apeirogon is an infinite 2-polytope with vertices that are not all colinear. Infinite zig-zag skew polygons are 2-dimensional infinite skew polygons with vertices alternating between two parallel lines. Infinite helical polygons are 3-dimensional infinite skew polygons with vertices on the surface of a cylinder. Regular infinite skew polygons exist in the Petrie polygons of the affine and hyperbolic Coxeter groups. They are constructed a single operator as the composite of all the reflections of the Coxeter group. (en)
  • 在幾何學中,扭歪無限邊形(英語:Skew apeirogon)又稱歪斜無限邊形、撓無限邊形是一種頂點並非全部共線的無限邊形。 較常討論及研究的扭歪無限邊形主要有兩個不同維度的形式,一種是二維的鋸齒歪斜無限邊形(英語:zig-zag skew apeirogons)其頂點交錯位於兩條互相平行的直線上,另一種是三維的螺旋歪斜無限邊形(英語:helical skew apeirogons)其頂點位於一個圓柱面上。二維中的鋸齒歪斜無限邊形可以看做是不斷,如三維空間的對稱的形狀。 正的扭歪無限邊形存在於仿射和雙曲考克斯特群的皮特里多邊形中。他們就如同合成所有考克斯特群鏡射的單一變換。 (zh)
  • En geometría, un polígono alabeado infinito o apeirógono oblicuo es un 2-politopo infinito con vértices que no son todos colineales. Los polígonos oblicuos en zig-zag infinitos son formas bidimensionales con vértices que se alternan entre dos líneas rectas paralelas. A su vez, los polígonos helicoidales infinitos son formas tridimensionales con sus vértices en la superficie de un cilindro.​ (es)
rdfs:label
  • Polígono infinito oblicuo (es)
  • Infinite skew polygon (en)
  • 扭歪無限邊形 (zh)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License