dbo:abstract
|
- في الإحصاءات، خوارزمية تحقيق أقصى قدر للتوقع (EM) هي طريقة تكرارية لإيجاد الاحتمال الأقصى الممكن (تقدير الاحتمال) أو أقصى الاحتمال البعدي (MAP) للمعاملات (وسيط (رياضيات)) في النماذج الإحصائية، حيث يعتمد هذا النموذج على المتغيرات الكامنة غير الملحوظة. EM يتمثل في تنفيذ خطوتين: خطوة التوقع (E)، التي ينتج منها توقع للوغاريتم الاحتمال(دالة الإمكان)الأقصى الممكن باستخدام التقدير الحالي للمعلمات، و خطوة تعظيم (M)، التي يحسب فيها المعاملات بحيث يتم تعظيم للوغاريتم المتوقع في الخطوة (E). ثم يتم استخدام هذه المعاملات في تقدير توزيع المتغيرات الكامنة في الخطوة (E) المقبلة. (ar)
- EM algoritmus (z anglického expectation–maximization – očekávaná (střední) hodnota–maximalizace) je ve statistice iterační metoda pro hledání maximálně věrohodného odhadu nebo odhadu statistického modelu s (MAP), který závisí na nepozorovaných . Při EM iteracích se pravidelně střídají kroky výpočtu střední hodnoty (očekávání, E) s kroky maximalizace (M). V kroku E se vytváří očekávaná na základě aktuálního odhadu parametrů. V kroku M se počítají parametry maximalizující očekávanou logaritmickou věrohodnostní funkci nalezenou v kroku E. Tyto odhady parametrů se pak používají pro určení rozdělení skrytých proměnných v dalším kroku E. EM clusterování dat o erupcích gejzíru Old Faithful. Náhodný počáteční model (který kvůli různý měřítkům na osách vypadá jako dvě velmi nízké a široké elipsy) se přizpůsobuje pozorovaným datům. V první iteraci se model změní velmi výrazně, ale pak konverguje k rozlišení dvou režimů erupcí gejzíru. Vizualizováno pomocí . (cs)
- Der Erwartungs-Maximierungs-Algorithmus (englisch expectation-maximization algorithm, daher auch Expectation-Maximization-Algorithmus, selten auch Estimation-Maximization-Algorithmus, kurz EM-Algorithmus) ist ein Algorithmus der mathematischen Statistik.Die Kernidee des EM-Algorithmus ist es, mit einem zufällig gewählten Modell zu starten, und abwechselnd die Zuordnung der Daten zu den einzelnen Teilen des Modells (Erwartungsschritt, kurz: E-Schritt) und die Parameter des Modells an die neueste Zuordnung (Maximierungsschritt, kurz: M-Schritt) zu verbessern. In beiden Schritten wird dabei die Qualität des Ergebnisses verbessert: Im E-Schritt werden die Punkte besser zugeordnet, im M-Schritt wird das Modell so verändert, dass es besser zu den Daten passt. Findet keine wesentliche Verbesserung mehr statt, beendet man das Verfahren. Das Verfahren findet typischerweise nur „lokale“ Optima. Dadurch ist es oft notwendig, das Verfahren mehrfach aufzurufen und das beste so gefundene Ergebnis auszuwählen. (de)
- In statistics, an expectation–maximization (EM) algorithm is an iterative method to find (local) maximum likelihood or maximum a posteriori (MAP) estimates of parameters in statistical models, where the model depends on unobserved latent variables. The EM iteration alternates between performing an expectation (E) step, which creates a function for the expectation of the log-likelihood evaluated using the current estimate for the parameters, and a maximization (M) step, which computes parameters maximizing the expected log-likelihood found on the E step. These parameter-estimates are then used to determine the distribution of the latent variables in the next E step. (en)
- L'algorithme espérance-maximisation (en anglais expectation-maximization algorithm, souvent abrégé EM) est un algorithme itératif qui permet de trouver les paramètres du maximum de vraisemblance d'un modèle probabiliste lorsque ce dernier dépend de variables latentes non observables. Il a été proposé par Dempster et al. en 1977. De nombreuses variantes ont par la suite été proposées, formant une classe entière d'algorithmes. (fr)
- El algoritmo esperanza-maximización o algoritmo EM se usa en estadística para encontrar estimadores de máxima verosimilitud de parámetros en modelos probabilísticos que dependen de variables no observables. El algoritmo EM alterna pasos de esperanza (paso E), donde se computa la esperanza de la verosimilitud mediante la inclusión de variables latentes como si fueran observables, y un paso de maximización (paso M), donde se computan estimadores de máxima verosimilitud de los parámetros mediante la maximización de la verosimilitud esperada del paso E. Los parámetros que se encuentran en el paso M se usan para comenzar el paso E siguiente, y así el proceso se repite. (es)
- Dalam statistika, algoritma ekspektasi-maksimisasi (bahasa Inggris: expectation-maximization algorithm) atau algoritma EM (bahasa Inggris: EM algorithm) adalah metode berulang yang dipakai untuk mencari pendekatan nilai (bahasa Inggris: maximum likelihood) dan (MAP) dari parameter dalam sebuah , dimana modelnya bergantung pada yang tidak diketahui. Algoritma ekspektasi-maksimasi termasuk karena berupa basis perhitungan probabilitas. Algoritma ini secara intuitif memiliki dua tahap, yaitu tahap ekspektasi dan tahap maksimisasi. Tahap ekspektasi merupakan tahap yang menentukan perhitungan ekspektasi sehingga diperoleh nilai estimasi parameternya, sedangkan tahap maksimalisasi merupakan tahap yang mengulangi perhitungan parameter sehingga memaksimalkan nilai probabilitas. Penerapan algoritma ekspektasi-maksimisasi sangatlah luas, salah satunya adalah pembelajaran mesin, dimana algoritma ini dipakai sebagai metode pengelompok data. Selain itu, algoritma ekspektasi-maksimisasi juga memiliki penerapan lainnya, seperti pengenalan ucapan, dan analisis faktor. (in)
- EMアルゴリズム(英: expectation–maximization algorithm)とは、統計学において、確率モデルのパラメータを最尤推定する手法の一つであり、観測不可能な潜在変数に確率モデルが依存する場合に用いられる。EM法、期待値最大化法(きたいちさいだいかほう)とも呼ばれる。その一般性の高さから、機械学習、音声認識、因子分析など、広汎な応用がある。 EMアルゴリズムは反復法の一種であり、期待値(英: expectation, E) ステップと最大化 (英: maximization, M)ステップを交互に繰り替えすことで計算が進行する。Eステップでは、現在推定されている潜在変数の分布に基づいて、モデルの尤度の期待値を計算する。Mステップでは、E ステップで求まった尤度の期待値を最大化するようなパラメータを求める。M ステップで求まったパラメータは、次の E ステップで使われる潜在変数の分布を決定するために用いられる。 (ja)
- In statistica, un algoritmo di aspettazione-massimizzazione o algoritmo expectation-maximization (EM) è un metodo iterativo per trovare stime (locali) di massima verosimiglianza (o le stime del massimo a posteriori) dei parametri di modelli statistici che dipendono da variabili latenti (non osservate). L'iterazione di EM alterna l'esecuzione di un passo detto expectation (E), che crea una funzione per il valore atteso della verosimiglianza logaritmica calcolata usando la stima dei parametri corrente, e un passo detto maximization (M), che calcola nuove stime dei parametri massimizzando la funzione di verosimiglianza logaritmica attesa trovata al passo E. Tali stime dei parametri possono poi essere usate per determinare la distribuzione delle variabili latenti al passo E dell'iterata successiva. (it)
- 기댓값 최대화 알고리즘(expectation-maximization algorithm, 약자 EM 알고리즘)은 관측되지 않는 잠재변수에 의존하는 확률 모델에서 최대가능도(maximum likelihood)나 최대사후확률(maximum a posteriori, 약자 MAP)을 갖는 모수의 추정값을 찾는 반복적인 알고리즘이다.EM 알고리즘은 모수에 관한 추정값으로 로그가능도(log likelihood)의 기댓값을 계산하는 기댓값 (E) 단계와 이 기댓값을 최대화하는 모수 추정값들을 구하는 최대화 (M) 단계를 번갈아가면서 적용한다.최대화 단계에서 계산한 변수값은 다음 기댓값 단계의 추정값으로 쓰인다. (ko)
- Em estatística, o algoritmo de expectativa-maximização (EM) é um método iterativo para estimar parâmetros em modelos estatísticos, quando o modelo depende de variáveis latentes, ou seja, não observadas. A iteração EM alterna entre executar uma etapa de expectativa (E), e uma de maximização (M). A etapa de expectativa cria uma função para a expectativa da verossimilhança logarítmica usando a estimativa atual para os parâmetros. A etapa de maximização (M), calcula parâmetros para maximizar a verossimilhança logarítmica encontrada na etapa E. Essas estimativas de parâmetro são usadas para determinar a distribuição das variáveis latentes na próxima etapa E, e o algoritmo se repete várias vezes (por isso é chamado iterativo). (pt)
- EM-алгоритм (англ. Expectation-maximization (EM) algorithm) — алгоритм, используемый в математической статистике для нахождения оценок максимального правдоподобия параметров вероятностных моделей, в случае, когда модель зависит от некоторых скрытых переменных. Каждая итерация алгоритма состоит из двух шагов. На E-шаге (expectation) вычисляется ожидаемое значение функции правдоподобия, при этом скрытые переменные рассматриваются как наблюдаемые. На M-шаге (maximization) вычисляется оценка максимального правдоподобия, таким образом увеличивается ожидаемое правдоподобие, вычисляемое на E-шаге. Затем это значение используется для E-шага на следующей итерации. Алгоритм выполняется до сходимости. Часто EM-алгоритм используют для разделения смеси гауссиан. (ru)
- 最大期望演算法(Expectation-maximization algorithm,又譯期望最大化算法)在统计中被用于寻找,依赖于不可观察的隐性变量的概率模型中,参数的最大似然估计。 在统计计算中,最大期望(EM)算法是在概率模型中寻找参数最大似然估计或者最大后验估计的算法,其中概率模型依赖于无法观测的隐变量。最大期望算法经常用在机器学习和计算机视觉的数据聚类(Data Clustering)领域。最大期望算法经过两个步骤交替进行计算,第一步是计算期望(E),利用对隐藏变量的现有估计值,计算其最大似然估计值;第二步是最大化(M),最大化在E步上求得的最大似然值来计算参数的值。M步上找到的参数估计值被用于下一个E步计算中,这个过程不断交替进行。 (zh)
- EM-алгоритм (англ. Expectation-maximization (EM) algorithm) — алгоритм, що використовується в математичній статистиці для знаходження оцінок максимальної схожості параметрів ймовірних моделей, у випадку, коли модель залежить від деяких прихованих змінних. Кожна ітерація алгоритму складається з двох кроків. На E-кроці (expectation) вираховується очікуване значення функції правдоподібності, при цьому приховані змінні розглядаються як спостережувані. На M-кроці (maximization) вираховується оцінка максимальної схожості, таким чином збільшується очікувана схожість, вирахувана на E-кроці. Потім це значення використовується для E-кроку на наступній ітерації. Алгоритм виконується до збіжності. Часто EM-алгоритм використовують для розділення суміші функції Гауса. (uk)
|
dbo:thumbnail
| |
dbo:wikiPageExternalLink
| |
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 48194 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
dbp:wikiPageUsesTemplate
| |
dcterms:subject
| |
gold:hypernym
| |
rdf:type
| |
rdfs:comment
|
- في الإحصاءات، خوارزمية تحقيق أقصى قدر للتوقع (EM) هي طريقة تكرارية لإيجاد الاحتمال الأقصى الممكن (تقدير الاحتمال) أو أقصى الاحتمال البعدي (MAP) للمعاملات (وسيط (رياضيات)) في النماذج الإحصائية، حيث يعتمد هذا النموذج على المتغيرات الكامنة غير الملحوظة. EM يتمثل في تنفيذ خطوتين: خطوة التوقع (E)، التي ينتج منها توقع للوغاريتم الاحتمال(دالة الإمكان)الأقصى الممكن باستخدام التقدير الحالي للمعلمات، و خطوة تعظيم (M)، التي يحسب فيها المعاملات بحيث يتم تعظيم للوغاريتم المتوقع في الخطوة (E). ثم يتم استخدام هذه المعاملات في تقدير توزيع المتغيرات الكامنة في الخطوة (E) المقبلة. (ar)
- In statistics, an expectation–maximization (EM) algorithm is an iterative method to find (local) maximum likelihood or maximum a posteriori (MAP) estimates of parameters in statistical models, where the model depends on unobserved latent variables. The EM iteration alternates between performing an expectation (E) step, which creates a function for the expectation of the log-likelihood evaluated using the current estimate for the parameters, and a maximization (M) step, which computes parameters maximizing the expected log-likelihood found on the E step. These parameter-estimates are then used to determine the distribution of the latent variables in the next E step. (en)
- L'algorithme espérance-maximisation (en anglais expectation-maximization algorithm, souvent abrégé EM) est un algorithme itératif qui permet de trouver les paramètres du maximum de vraisemblance d'un modèle probabiliste lorsque ce dernier dépend de variables latentes non observables. Il a été proposé par Dempster et al. en 1977. De nombreuses variantes ont par la suite été proposées, formant une classe entière d'algorithmes. (fr)
- El algoritmo esperanza-maximización o algoritmo EM se usa en estadística para encontrar estimadores de máxima verosimilitud de parámetros en modelos probabilísticos que dependen de variables no observables. El algoritmo EM alterna pasos de esperanza (paso E), donde se computa la esperanza de la verosimilitud mediante la inclusión de variables latentes como si fueran observables, y un paso de maximización (paso M), donde se computan estimadores de máxima verosimilitud de los parámetros mediante la maximización de la verosimilitud esperada del paso E. Los parámetros que se encuentran en el paso M se usan para comenzar el paso E siguiente, y así el proceso se repite. (es)
- EMアルゴリズム(英: expectation–maximization algorithm)とは、統計学において、確率モデルのパラメータを最尤推定する手法の一つであり、観測不可能な潜在変数に確率モデルが依存する場合に用いられる。EM法、期待値最大化法(きたいちさいだいかほう)とも呼ばれる。その一般性の高さから、機械学習、音声認識、因子分析など、広汎な応用がある。 EMアルゴリズムは反復法の一種であり、期待値(英: expectation, E) ステップと最大化 (英: maximization, M)ステップを交互に繰り替えすことで計算が進行する。Eステップでは、現在推定されている潜在変数の分布に基づいて、モデルの尤度の期待値を計算する。Mステップでは、E ステップで求まった尤度の期待値を最大化するようなパラメータを求める。M ステップで求まったパラメータは、次の E ステップで使われる潜在変数の分布を決定するために用いられる。 (ja)
- 기댓값 최대화 알고리즘(expectation-maximization algorithm, 약자 EM 알고리즘)은 관측되지 않는 잠재변수에 의존하는 확률 모델에서 최대가능도(maximum likelihood)나 최대사후확률(maximum a posteriori, 약자 MAP)을 갖는 모수의 추정값을 찾는 반복적인 알고리즘이다.EM 알고리즘은 모수에 관한 추정값으로 로그가능도(log likelihood)의 기댓값을 계산하는 기댓값 (E) 단계와 이 기댓값을 최대화하는 모수 추정값들을 구하는 최대화 (M) 단계를 번갈아가면서 적용한다.최대화 단계에서 계산한 변수값은 다음 기댓값 단계의 추정값으로 쓰인다. (ko)
- Em estatística, o algoritmo de expectativa-maximização (EM) é um método iterativo para estimar parâmetros em modelos estatísticos, quando o modelo depende de variáveis latentes, ou seja, não observadas. A iteração EM alterna entre executar uma etapa de expectativa (E), e uma de maximização (M). A etapa de expectativa cria uma função para a expectativa da verossimilhança logarítmica usando a estimativa atual para os parâmetros. A etapa de maximização (M), calcula parâmetros para maximizar a verossimilhança logarítmica encontrada na etapa E. Essas estimativas de parâmetro são usadas para determinar a distribuição das variáveis latentes na próxima etapa E, e o algoritmo se repete várias vezes (por isso é chamado iterativo). (pt)
- 最大期望演算法(Expectation-maximization algorithm,又譯期望最大化算法)在统计中被用于寻找,依赖于不可观察的隐性变量的概率模型中,参数的最大似然估计。 在统计计算中,最大期望(EM)算法是在概率模型中寻找参数最大似然估计或者最大后验估计的算法,其中概率模型依赖于无法观测的隐变量。最大期望算法经常用在机器学习和计算机视觉的数据聚类(Data Clustering)领域。最大期望算法经过两个步骤交替进行计算,第一步是计算期望(E),利用对隐藏变量的现有估计值,计算其最大似然估计值;第二步是最大化(M),最大化在E步上求得的最大似然值来计算参数的值。M步上找到的参数估计值被用于下一个E步计算中,这个过程不断交替进行。 (zh)
- EM algoritmus (z anglického expectation–maximization – očekávaná (střední) hodnota–maximalizace) je ve statistice iterační metoda pro hledání maximálně věrohodného odhadu nebo odhadu statistického modelu s (MAP), který závisí na nepozorovaných . Při EM iteracích se pravidelně střídají kroky výpočtu střední hodnoty (očekávání, E) s kroky maximalizace (M). V kroku E se vytváří očekávaná na základě aktuálního odhadu parametrů. V kroku M se počítají parametry maximalizující očekávanou logaritmickou věrohodnostní funkci nalezenou v kroku E. Tyto odhady parametrů se pak používají pro určení rozdělení skrytých proměnných v dalším kroku E. (cs)
- Der Erwartungs-Maximierungs-Algorithmus (englisch expectation-maximization algorithm, daher auch Expectation-Maximization-Algorithmus, selten auch Estimation-Maximization-Algorithmus, kurz EM-Algorithmus) ist ein Algorithmus der mathematischen Statistik.Die Kernidee des EM-Algorithmus ist es, mit einem zufällig gewählten Modell zu starten, und abwechselnd die Zuordnung der Daten zu den einzelnen Teilen des Modells (Erwartungsschritt, kurz: E-Schritt) und die Parameter des Modells an die neueste Zuordnung (Maximierungsschritt, kurz: M-Schritt) zu verbessern. (de)
- Dalam statistika, algoritma ekspektasi-maksimisasi (bahasa Inggris: expectation-maximization algorithm) atau algoritma EM (bahasa Inggris: EM algorithm) adalah metode berulang yang dipakai untuk mencari pendekatan nilai (bahasa Inggris: maximum likelihood) dan (MAP) dari parameter dalam sebuah , dimana modelnya bergantung pada yang tidak diketahui. (in)
- In statistica, un algoritmo di aspettazione-massimizzazione o algoritmo expectation-maximization (EM) è un metodo iterativo per trovare stime (locali) di massima verosimiglianza (o le stime del massimo a posteriori) dei parametri di modelli statistici che dipendono da variabili latenti (non osservate). L'iterazione di EM alterna l'esecuzione di un passo detto expectation (E), che crea una funzione per il valore atteso della verosimiglianza logaritmica calcolata usando la stima dei parametri corrente, e un passo detto maximization (M), che calcola nuove stime dei parametri massimizzando la funzione di verosimiglianza logaritmica attesa trovata al passo E. Tali stime dei parametri possono poi essere usate per determinare la distribuzione delle variabili latenti al passo E dell'iterata succes (it)
- EM-алгоритм (англ. Expectation-maximization (EM) algorithm) — алгоритм, используемый в математической статистике для нахождения оценок максимального правдоподобия параметров вероятностных моделей, в случае, когда модель зависит от некоторых скрытых переменных. Каждая итерация алгоритма состоит из двух шагов. На E-шаге (expectation) вычисляется ожидаемое значение функции правдоподобия, при этом скрытые переменные рассматриваются как наблюдаемые. На M-шаге (maximization) вычисляется оценка максимального правдоподобия, таким образом увеличивается ожидаемое правдоподобие, вычисляемое на E-шаге. Затем это значение используется для E-шага на следующей итерации. Алгоритм выполняется до сходимости. (ru)
- EM-алгоритм (англ. Expectation-maximization (EM) algorithm) — алгоритм, що використовується в математичній статистиці для знаходження оцінок максимальної схожості параметрів ймовірних моделей, у випадку, коли модель залежить від деяких прихованих змінних. Кожна ітерація алгоритму складається з двох кроків. На E-кроці (expectation) вираховується очікуване значення функції правдоподібності, при цьому приховані змінні розглядаються як спостережувані. На M-кроці (maximization) вираховується оцінка максимальної схожості, таким чином збільшується очікувана схожість, вирахувана на E-кроці. Потім це значення використовується для E-кроку на наступній ітерації. Алгоритм виконується до збіжності. (uk)
|
rdfs:label
|
- تحقيق أقصى قدر للتوقع (EM) (ar)
- EM algoritmus (cs)
- EM-Algorithmus (de)
- Algoritmo esperanza-maximización (es)
- Expectation–maximization algorithm (en)
- Algoritma ekspektasi-maksimisasi (in)
- Algoritmo EM (it)
- Algorithme espérance-maximisation (fr)
- 기댓값 최대화 알고리즘 (ko)
- EMアルゴリズム (ja)
- Algoritmo de maximização de expectativa (pt)
- EM-алгоритм (ru)
- EM-алгоритм (uk)
- 最大期望算法 (zh)
|
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:depiction
| |
foaf:isPrimaryTopicOf
| |
is dbo:knownFor
of | |
is dbo:wikiPageDisambiguates
of | |
is dbo:wikiPageRedirects
of | |
is dbo:wikiPageWikiLink
of | |
is dbp:knownFor
of | |
is foaf:primaryTopic
of | |