dbo:abstract
|
- For parsing algorithms in computer science, the inside–outside algorithm is a way of re-estimating production probabilities in a probabilistic context-free grammar. It was introduced by James K. Baker in 1979 as a generalization of the forward–backward algorithm for parameter estimation on hidden Markov models to stochastic context-free grammars. It is used to compute expectations, for example as part of the expectation–maximization algorithm (an unsupervised learning algorithm). (en)
- 內部外部演算法(英語:inside-outside algorithm)是一種重新檢驗隨機上下文無關文法(probabilistic context-free grammar)生成機率的方式,由James K. Baker 於1979年提出,是一個一般化的,用來作為隨機上下文無關文法其隱馬爾可夫模型的屬性評估。這種演算法是用來計算某種期望值,舉例來說,可以用來成為最大期望算法(一種無監督的學習演算法)的一部分。 (zh)
|
dbo:wikiPageExternalLink
| |
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 4842 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
dbp:wikiPageUsesTemplate
| |
dcterms:subject
| |
gold:hypernym
| |
rdf:type
| |
rdfs:comment
|
- For parsing algorithms in computer science, the inside–outside algorithm is a way of re-estimating production probabilities in a probabilistic context-free grammar. It was introduced by James K. Baker in 1979 as a generalization of the forward–backward algorithm for parameter estimation on hidden Markov models to stochastic context-free grammars. It is used to compute expectations, for example as part of the expectation–maximization algorithm (an unsupervised learning algorithm). (en)
- 內部外部演算法(英語:inside-outside algorithm)是一種重新檢驗隨機上下文無關文法(probabilistic context-free grammar)生成機率的方式,由James K. Baker 於1979年提出,是一個一般化的,用來作為隨機上下文無關文法其隱馬爾可夫模型的屬性評估。這種演算法是用來計算某種期望值,舉例來說,可以用來成為最大期望算法(一種無監督的學習演算法)的一部分。 (zh)
|
rdfs:label
|
- Inside–outside algorithm (en)
- 內部外部演算法 (zh)
|
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageRedirects
of | |
is dbo:wikiPageWikiLink
of | |
is foaf:primaryTopic
of | |