An Entity of Type: Abstraction100002137, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In mathematics, in the field of group theory, a component of a finite group is a quasisimple subnormal subgroup. Any two distinct components commute. The product of all the components is the layer of the group. For finite abelian (or nilpotent) groups, p-component is used in a different sense to mean the Sylow p-subgroup, so the abelian group is the product of its p-components for primes p. These are not components in the sense above, as abelian groups are not quasisimple.

Property Value
dbo:abstract
  • In mathematics, in the field of group theory, a component of a finite group is a quasisimple subnormal subgroup. Any two distinct components commute. The product of all the components is the layer of the group. For finite abelian (or nilpotent) groups, p-component is used in a different sense to mean the Sylow p-subgroup, so the abelian group is the product of its p-components for primes p. These are not components in the sense above, as abelian groups are not quasisimple. A quasisimple subgroup of a finite group is called a standard component if its centralizer has even order, it is normal in the centralizer of every involution centralizing it, and it commutes with none of its conjugates. This concept is used in the classification of finite simple groups, for instance, by showing that under mild restrictions on the standard component one of the following always holds: * a standard component is normal (so a component as above), * the whole group has a nontrivial solvable normal subgroup, * the subgroup generated by the conjugates of the standard component is on a short list, * or the standard component is a previously unknown quasisimple group. (en)
dbo:wikiPageID
  • 4939168 (xsd:integer)
dbo:wikiPageLength
  • 2126 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 913203257 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
rdf:type
rdfs:comment
  • In mathematics, in the field of group theory, a component of a finite group is a quasisimple subnormal subgroup. Any two distinct components commute. The product of all the components is the layer of the group. For finite abelian (or nilpotent) groups, p-component is used in a different sense to mean the Sylow p-subgroup, so the abelian group is the product of its p-components for primes p. These are not components in the sense above, as abelian groups are not quasisimple. (en)
rdfs:label
  • Component (group theory) (en)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License