An Entity of Type: WikicatAbelianVarieties, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In mathematics, the Appell–Humbert theorem describes the line bundles on a complex torus or complex abelian variety.It was proved for 2-dimensional tori by Appell and Humbert, and in general by Lefschetz

Property Value
dbo:abstract
  • In mathematics, the Appell–Humbert theorem describes the line bundles on a complex torus or complex abelian variety.It was proved for 2-dimensional tori by Appell and Humbert, and in general by Lefschetz (en)
  • Em matemática, o teorema Appell-Humbert descreve os feixes de linha em um toro complexo ou variedade abeliana complexa. Foi comprovado para os tori bidimensionais por Appel (1891) e Marie Georges Humbert (1893) e em geral por Lefschetz (1921). (pt)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 23379150 (xsd:integer)
dbo:wikiPageLength
  • 5220 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1034959685 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dct:subject
rdf:type
rdfs:comment
  • In mathematics, the Appell–Humbert theorem describes the line bundles on a complex torus or complex abelian variety.It was proved for 2-dimensional tori by Appell and Humbert, and in general by Lefschetz (en)
  • Em matemática, o teorema Appell-Humbert descreve os feixes de linha em um toro complexo ou variedade abeliana complexa. Foi comprovado para os tori bidimensionais por Appel (1891) e Marie Georges Humbert (1893) e em geral por Lefschetz (1921). (pt)
rdfs:label
  • Appell–Humbert theorem (en)
  • Teorema de Appell–Humbert (pt)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:knownFor of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is dbp:knownFor of
is rdfs:seeAlso of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License