Browse using
OpenLink Faceted Browser
OpenLink Structured Data Editor
LodLive Browser
Formats
RDF:
N-Triples
N3
Turtle
JSON
XML
OData:
Atom
JSON
Microdata:
JSON
HTML
Embedded:
JSON
Turtle
Other:
CSV
JSON-LD
Faceted Browser
Sparql Endpoint
About:
http://dbpedia.org/class/yago/WikicatTheoremsInAlgebraicGeometry
An Entity of Type:
Thing
,
from Named Graph:
http://dbpedia.org
,
within Data Space:
dbpedia.org
Property
Value
rdfs:
subClassOf
yago
:Theorem106752293
owl:
equivalentClass
yago-res
:wikicat_Theorems_in_algebraic_geometry
is
rdf:
type
of
dbr
:Beauville–Laszlo_theorem
dbr
:Beck's_monadicity_theorem
dbr
:Belyi's_theorem
dbr
:Weber's_theorem
dbr
:Appell–Humbert_theorem
dbr
:Ribet's_theorem
dbr
:De_Franchis_theorem
dbr
:Chevalley's_structure_theorem
dbr
:Modularity_theorem
dbr
:Clifford's_theorem_on_special_divisors
dbr
:Fulton–Hansen_connectedness_theorem
dbr
:Harnack's_curve_theorem
dbr
:Leray's_theorem
dbr
:Bézout's_theorem
dbr
:Addition_theorem
dbr
:Cayley–Bacharach_theorem
dbr
:Torsion_conjecture
dbr
:Mnev's_universality_theorem
dbr
:Faltings's_theorem
dbr
:Chasles'_theorem_(geometry)
dbr
:Grauert–Riemenschneider_vanishing_theorem
dbr
:Hirzebruch–Riemann–Roch_theorem
dbr
:Kawamata–Viehweg_vanishing_theorem
dbr
:Kempf–Ness_theorem
dbr
:Kodaira_embedding_theorem
dbr
:Kodaira_vanishing_theorem
dbr
:Lefschetz_hyperplane_theorem
dbr
:Lefschetz_theorem_on_(1,1)-classes
dbr
:Hilbert's_Nullstellensatz
dbr
:Hurwitz's_automorphisms_theorem
dbr
:AF+BG_theorem
dbr
:Abhyankar–Moh_theorem
dbr
:Birkhoff–Grothendieck_theorem
dbr
:Honda–Tate_theorem
dbr
:Torelli_theorem
dbr
:Tsen's_theorem
dbr
:Borel_fixed-point_theorem
dbr
:Grothendieck's_connectedness_theorem
dbr
:Grothendieck–Riemann–Roch_theorem
dbr
:Theorem_of_Bertini
dbr
:Tarski–Seidenberg_theorem
dbr
:Mumford_vanishing_theorem
dbr
:Proper_base_change_theorem
dbr
:Ramanujam_vanishing_theorem
dbr
:Veblen–Young_theorem
dbr
:Zariski's_main_theorem
dbr
:Riemann–Roch_theorem_for_surfaces
dbr
:Riemann–Roch_theorem
This content was extracted from
Wikipedia
and is licensed under the
Creative Commons Attribution-ShareAlike 3.0 Unported License