dbo:abstract
|
- In mathematics, the theta correspondence or Howe correspondence is a mathematical relation between representations of two groups of a reductive dual pair. The local theta correspondence relates irreducible admissible representations over a local field, while the global theta correspondence relates irreducible automorphic representations over a global field. The theta correspondence was introduced by Roger Howe in . Its name arose due to its origin in André Weil's representation theoretical formulation of the theory of theta series in . The Shimura correspondence as constructed by Jean-Loup Waldspurger in and may be viewed as an instance of the theta correspondence. (en)
- Thetakorrespondensen eller Howekorrespondensen är inom matematiken en korrespondens mellan associerade till de två grupperna av ett . Den introducerades av. (sv)
|
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 8955 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
dbp:wikiPageUsesTemplate
| |
dct:subject
| |
gold:hypernym
| |
rdf:type
| |
rdfs:comment
|
- Thetakorrespondensen eller Howekorrespondensen är inom matematiken en korrespondens mellan associerade till de två grupperna av ett . Den introducerades av. (sv)
- In mathematics, the theta correspondence or Howe correspondence is a mathematical relation between representations of two groups of a reductive dual pair. The local theta correspondence relates irreducible admissible representations over a local field, while the global theta correspondence relates irreducible automorphic representations over a global field. (en)
|
rdfs:label
|
- Theta correspondence (en)
- Thetakorrespondens (sv)
|
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageRedirects
of | |
is dbo:wikiPageWikiLink
of | |
is foaf:primaryTopic
of | |