Thermodynamics is a branch of physics that deals with heat, work, and temperature, and their relation to energy, radiation, and properties of matter. The behavior of these quantities is governed by the four laws of thermodynamics which convey a quantitative description using measurable macroscopic physical quantities, but may be explained in terms of microscopic constituents by statistical mechanics. Thermodynamics applies to a wide variety of topics in science and engineering, especially physical chemistry, chemical engineering and mechanical engineering, but also in other complex fields such as meteorology.

Property Value
dbo:abstract
  • الديناميكا الحرارية أو التحريك الحراري أو الثرموديناميك (باللاتينية: Thermodynamica) هو أحد فروع الميكانيكا الإحصائية الذي يدرس خواص انتقال الشكل الحراري للطاقة وتحولاته إلى أوجه أخرى منها، مثل تحول الطاقة الحرارية إلى طاقة ميكانيكية مثلما في محرك احتراق داخلي والآلة البخارية، أو تحول الطاقة الحرارية إلى طاقة كهربائية مثلما في محطات القوى، وتحول الطاقة الحركية إلى طاقة كهربائية كما في توليد الكهرباء من السدود والأنهار. وقد تطورت أساسيات علم الترموديناميكا بدراسة تغيرات الحجم والضغط ودرجة الحرارة في الآلة البخارية. معظم هذه الدراسات تعتمد على فكرة أن أي نظام معزول في أي مكان من الكون يحتوي على كمية فيزيائية قابلة للقياس تسمى الطاقة الداخلية للنظام ويرمز لها بالرمز (U). وتمثل هذه الطاقة الداخلية مجموع الطاقة الكامنة والطاقة الحركية للذرات والجزيئات ضمن النظام، أي جميع الأنماط التي يمكن أن تنتقل مباشرة كالحرارة، كما تنتمي الطاقة الكيميائية (المختزنة في الروابط الكيميائية) والطاقة النووية (الموجودة في نوى الذرات) إلى الطاقة الداخلية لنظام. بدأت دراسات الديناميكا الحرارية مع اختراع الآلة البخارية وترتب عليها قوانين كثيرة تسري أيضا على جميع أنواع الآلات؛ وبصفة خاصة تلك التي تحول الطاقة الحرارية إلى شغل ميكانيكي مثل جميع أنواع المحركات أو عند تحول الطاقة الحركية إلى طاقة كهربائية مثلا أو العكس. نفرق في الترموديناميكا بين "نظام مفتوح " و"نظام مغلق" و"نظام معزول". في النظام المفتوح تعبر مواد النظام حدود النظام إلى الوسط المحيط، بعكس النظام المغلق فلا يحدث تبادل للمادة بين النظام والوسط المحيط. وفي النظام المعزول فلا يحدث بالإضافة إلى ذلك تبادل للطاقة بين النظام المعزول والوسط المحيط، وطبقا لقانون بقاء الطاقة يبقى مجموع الطاقات الموجودة فيه (طاقة حرارية ، وطاقة كيميائية، وطاقة حركة، وطاقة مغناطيسية...إلخ) تبقى مجموعها ثابتا. توضح لنا الديناميكا الحرارية اعتماد الحرارة والشغل الميكانيكي عند حدود النظام على دوال الحالة التي تصف حالة النظام. ومن دوال الحالة التي تصف النظام نجد: درجة الحرارة T، والضغط p، وكثافة الجسيمات n، والجهد الكيميائي μ وهذه تسمى "خواص مكثفة"، وصفات أخرى مثل الطاقة الداخلية U وإنتروبيا S، والحجم V وعدد الجسيمات N، وقد جرى العرف على تسميتها كميات شمولية. الفرق بين الكميات المكثفة والكميات الشمولية ينحصر في كون الدوال المكثفة لا تتغير بتضخيم النظام (إضافة جزء جديد) مثل الكثافة والحرارة النوعية، أما الدوال الشمولية أو الكميات الشمولية فهي تزداد بتضخيم النظام مثل عدد الجسيمات، والطاقة الداخلية (المحتوى الحراري في النظام). (ar)
  • Termodynamika je obor fyziky, který se zabývá procesy a vlastnostmi látek a polí spojených s teplem a tepelnými jevy; je součástí termiky. Vychází přitom z obecných principů přeměny energie, které jsou popsány čtyřmi termodynamickými zákony (z historických důvodů číslovány nultý až třetí). Termodynamika se dále dělí na studium rovnovážných a nerovnovážných procesů. Historicky byl vývoj termodynamiky veden touhou zvýšit efektivitu prvních parních strojů, čímž se zabývala klíčová práce Úvahy o hybné síle ohně francouzského fyzika Sadiho Carnota, často nazývaného otcem termodynamiky. O další rozvoj termodynamiky se zasadila formulace prvního a druhého zákona termodynamiky, na nichž se podíleli především William Thomson, pozdější lord Kelvin, Rudolf Clausius a William Rankine. Samotný termín termodynamika je prvně doložen v roce 1849 v práci lorda Kelvina. (cs)
  • La termodinàmica (del grec θερμo-, thérmë, que significa "calor" i δύναμις, dynamis, que significa "força") és una branca de la física que estudia els efectes dels canvis de la temperatura, pressió i volum dels sistemes físics a un nivell macroscòpic. Aproximadament, calor significa "energia en trànsit" i dinàmica es refereix al "moviment", per la qual cosa, en essència, la termodinàmica estudia la circulació de l'energia i com l'energia infon moviment. Així, estudia els fenòmens físics relacionats amb la calor i la temperatura, és a dir, el moviment desordenat de les partícules que formen la matèria. Històricament, la termodinàmica es va desenvolupar a partir de la necessitat d'augmentar l'eficiència de les primeres màquines de vapor. El punt de partida per a la major part de les consideracions termodinàmiques són les lleis de la termodinàmica, que postulen que l'energia pot ser intercanviada entre sistemes físics en forma de calor o treball. També es postula l'existència d'una magnitud anomenada entropia, que pot ser definida per a qualsevol sistema. A la termodinàmica s'estudien i classifiquen les interaccions entre diversos sistemes, fet que porta a definir conceptes com a sistema termodinàmic i el seu contorn. Un sistema termodinàmic es caracteritza per les seves propietats, relacionades entre si mitjançant les equacions d'estat. Aquestes es poden combinar per expressar l'energia interna i els potencials termodinàmics, útils per determinar les condicions d'equilibri entre sistemes i els processos espontanis. Amb aquestes eines, la termodinàmica descriu com els sistemes responen als canvis en el seu entorn. Això es pot aplicar a una àmplia varietat de temes de ciència i enginyeria, tals com motors, transicions de fase, reaccions químiques, fenòmens de transport, i fins i tot forats negres. Els resultats de la termodinàmica són essencials per a altres camps de la física i la química, enginyeria química, enginyeria aeroespacial, enginyeria mecànica, biologia cel·lular, enginyeria biomèdica, i la ciència de materials per anomenar-ne alguns. (ca)
  • Die Thermodynamik (von altgriechisch θερμός thermós, deutsch ‚warm‘, sowie altgriechisch δύναμις dýnamis, deutsch ‚Kraft‘) oder Wärmelehre ist eine natur- und ingenieurwissenschaftliche Disziplin. Sie hat ihren Ursprung im Studium der Dampfmaschinen und ging der Frage nach, wie man Wärme in mechanische Arbeit umwandeln kann. Dazu beschreibt sie Systeme aus hinreichend vielen Teilchen und deren Zustandsübergänge anhand von makroskopischen Zustandsgrößen, die statistische Funktionen der detaillierten Vielteilchenzustände darstellen. Als Ingenieurwissenschaft hat sie für die verschiedenen Möglichkeiten der Energie­umwandlung Bedeutung und in der Verfahrenstechnik beschreibt sie Eigenschaften und das Verhalten von Stoffen, die an Prozessen beteiligt sind. Als Begründer gilt der französische Physiker Sadi Carnot, der 1824 seine wegweisende Arbeit schrieb. Eine große Bedeutung haben die Hauptsätze der Thermodynamik, die eine ähnliche Stellung einnehmen wie die Newtonschen Axiome in der klassischen Mechanik oder die Maxwell-Gleichungen in der Elektrodynamik. Der erste Hauptsatz besagt, dass die gesamte Energie in einem abgeschlossenen System konstant ist und hat als Energieerhaltung in der gesamten Physik Gültigkeit. Der zweite Hauptsatz drückt aus, in welcher Richtung Energieumwandlungen möglich sind. So ist es beispielsweise möglich, mechanische, elektrische oder chemische Energie vollständig in Wärmeenergie (thermische Energie) umzuwandeln. Wärmeenergie dagegen lässt sich nur teilweise und nur mit hohem technischen Aufwand in diese Energien umwandeln. In der Thermodynamik gibt es zwei verschiedene Herangehensweisen, die sich darin unterscheiden, ob Stoffe als Kontinuum betrachtet werden, die sich beliebig teilen lassen, oder ob sie als Ansammlung von Teilchen wie Atomen oder Molekülen gesehen werden: * Die ältere Herangehensweise betrachtet Stoffe als Kontinuum und wird als klassische, phänomenologische oder Technische Thermodynamik (auch Technische Wärmelehre) bezeichnet und benutzt Begriffe wie Wärme, Druck, Volumen und Temperatur. Sie ist Teil der Klassischen Physik und vieler Ingenieurwissenschaften. Wenn die betrachteten Systeme aus mindestens Teilchen bestehen, was bei technischen Systemen immer der Fall ist, so ist dies eine sehr gute Näherung. * Die statistische Thermodynamik dagegen geht von einzelnen Teilchen aus und beschreibt sie wegen ihrer großen Anzahl mit statistischen Methoden und der kinetischen Gastheorie. Sie ist daher Teil der Statistischen Physik und erklärt beispielsweise, wie der Druck eines Gases auf den Behälter durch Stöße der einzelnen Moleküle des Gases entsteht oder wie die Temperatur mit der kinetischen Energie der Teilchen zusammenhängt. Diese Herangehensweise dient somit als Erklärung für verschiedene Phänomene und als theoretisches Fundament für die Hauptsätze, bietet aber für die Analyse oder Berechnung in den Ingenieurwissenschaften keine Vorteile, sodass sie dort nicht verfolgt wird. Die Thermodynamik befasst sich einerseits mit verschiedenen Prozessen, wenn daran Wärme beteiligt ist, ohne auf die Besonderheiten der daran beteiligten Stoffe einzugehen. Von besonderer Bedeutung sind Kreisprozesse, die in der Technik häufig vorkommen. Andererseits macht sie Aussagen über Stoffe wie die verschiedenen Aggregatzustände und ihren Wechsel (schmelzen, sieden, verdampfen …) oder chemische Reaktionen, die sehr stark von den jeweiligen Stoffen abhängen. (de)
  • Η Θερμοδυναμική είναι η μελέτη της μετατροπής της ενέργειας από μηχανική ενέργεια -έργο- σε θερμότητα και αντίστροφα, μέσα από τη μελέτη των θερμικών διεργασιών. Με τον όρο διεργασία εννοούμε την μετάβαση από τη μια κατάσταση ενός συστήματος σε μια άλλη. Η Θερμοδυναμική ασχολείται μόνο με την μακροσκοπική απόκριση των συστημάτων που την αποτελούν, την οποία και μπορούμε να υπολογίσουμε πειραματικά. Η Θερμοδυναμική σήμερα αποτελεί έναν πολύ βασικό κλάδο της Φυσικής, με πολλές εφαρμογές σε άλλες επιστήμες, και διδάσκεται ως προπτυχιακό μάθημα σε επιστήμονες και μηχανικούς σε όλο τον κόσμο. Η λέξη «Θερμοδυναμική» έχει το εξής νόημα: Θερμοδυναμική = «θερμο» + «δυναμική», δηλαδή ο τομέας της Φυσικής που ασχολείται με την δυναμική (μεταφορά και μετατροπή σε άλλη μορφή ενέργειας) της θερμότητας Θερμότητα: μορφή της ενέργειας που μεταφέρεται από ένα σώμα σε ένα άλλο λόγω διαφοράς θερμοκρασίας μεταξύ τους (μάλιστα η κατεύθυνση της αυθόρμητης μεταφοράς της θερμότητας είναι από το θερμότερο προς το ψυχρότερο αντικείμενο) (el)
  • Thermodynamics is a branch of physics that deals with heat, work, and temperature, and their relation to energy, radiation, and properties of matter. The behavior of these quantities is governed by the four laws of thermodynamics which convey a quantitative description using measurable macroscopic physical quantities, but may be explained in terms of microscopic constituents by statistical mechanics. Thermodynamics applies to a wide variety of topics in science and engineering, especially physical chemistry, chemical engineering and mechanical engineering, but also in other complex fields such as meteorology. Historically, thermodynamics developed out of a desire to increase the efficiency of early steam engines, particularly through the work of French physicist Nicolas Léonard Sadi Carnot (1824) who believed that engine efficiency was the key that could help France win the Napoleonic Wars. Scots-Irish physicist Lord Kelvin was the first to formulate a concise definition of thermodynamics in 1854 which stated, "Thermo-dynamics is the subject of the relation of heat to forces acting between contiguous parts of bodies, and the relation of heat to electrical agency." The initial application of thermodynamics to mechanical heat engines was quickly extended to the study of chemical compounds and chemical reactions. Chemical thermodynamics studies the nature of the role of entropy in the process of chemical reactions and has provided the bulk of expansion and knowledge of the field. Other formulations of thermodynamics emerged. Statistical thermodynamics, or statistical mechanics, concerns itself with statistical predictions of the collective motion of particles from their microscopic behavior. In 1909, Constantin Carathéodory presented a purely mathematical approach in an axiomatic formulation, a description often referred to as geometrical thermodynamics. (en)
  • Varmodinamiko aŭ termodinamiko estas la parto de fiziko aŭ fizika kemio pri makroskopa priskribo de sistemoj kun multegaj nombroj da mikroskopaj gradoj de libereco per makroskopaj propraĵoj de tiaj sistemoj kiel temperaturo, volumeno, premo, ktp. Gravan parton de la termodinamiko konsistigas la teorio pri maŝinoj kiuj transformas varmon al . Tiaj maŝinoj estas la vapormaŝino, la gasturbino kaj la eksplodmotoro (ekz. aŭ dizela motoro). Ĉar kemia energio ĝenerale estas facile transformebla al (ĉiuj strebas al ĝi), la transformo de al mekanika aŭ elektra energio ofte pasas tra varmeca energio, tamen ne necese. (eo)
  • Termodinamika (grezieraz τερμον "beroa" eta δυναμις "dinamika") beroa eta lana, eta sistema makroskopikoetan hauek duten eragina aztertzen dituen fisikaren arloa da, sistema osatzen duten partikulen mugimenduak estatistikoki analizatuz. (eu)
  • La termodinámica es la rama de la física que describe los estados de equilibrio termodinámico a nivel macroscópico. El Diccionario de la lengua española de la Real Academia, por su parte, define la termodinámica como la rama de la física encargada del estudio de la interacción entre el calor y otras manifestaciones de la energía.​ Constituye una teoría fenomenológica, a partir de razonamientos deductivos, que estudia sistemas reales, sin modelizar y sigue un método experimental.​ Los estados de equilibrio se estudian y definen por medio de magnitudes extensivas tales como la energía interna, la entropía, el volumen o la composición molar del sistema,​ o por medio de magnitudes no-extensivas derivadas de las anteriores como la temperatura, presión y el potencial químico; otras magnitudes, tales como la imanación, la fuerza electromotriz y las asociadas con la mecánica de los medios continuos en general también se pueden tratar por medio de la termodinámica.​ La termodinámica trata los procesos de transferencia de calor, que es una de las formas de energía y cómo se puede realizar un trabajo con ella. En esta área se describe cómo la materia en cualquiera de sus fases (sólido, líquido, gaseoso) va transformándose. Desde un punto de vista macroscópico de la materia, se estudia cómo esta reacciona a cambios en su volumen, presión y temperatura, entre otras magnitudes. La termodinámica se basa en cuatro leyes principales: el equilibrio termodinámico (o ley cero), el principio de conservación de la energía (primera ley), el aumento temporal de la entropía (segunda ley) y la imposibilidad del cero absoluto (tercera ley).​ Una consecuencia de la termodinámica es lo que hoy se conoce como mecánica estadística. Esta rama estudia, al igual que la termodinámica, los procesos de transferencia de calor, pero, al contrario a la anterior, desde un punto de vista molecular. La materia, como se conoce, está compuesta por moléculas, y el conocer el comportamiento de una sola de sus moléculas nos lleva a medidas erróneas. Por eso se debe tratar como un conjunto de elementos caóticos o aleatorios y se utiliza el lenguaje estadístico y consideraciones mecánicas para describir comportamientos macroscópicos de este conjunto molecular microscópico.​ La termodinámica ofrece un aparato formal aplicable únicamente a ,​ definidos como aquel estado hacia «el que todo sistema tiende a evolucionar y caracterizado porque en el mismo todas las propiedades del sistema quedan determinadas por factores intrínsecos y no por influencias externas previamente aplicadas».​ Tales estados terminales de equilibrio son, por definición, independientes del tiempo, y todo el aparato formal de la termodinámica —todas las leyes y variables termodinámicas— se definen de tal modo que se podría decir que un sistema está en equilibrio si sus propiedades se pueden describir consistentemente empleando la teoría termodinámica.​ Los estados de equilibrio son necesariamente coherentes con los contornos del sistema y las restricciones a las que esté sometido. Por medio de los cambios producidos en estas restricciones (esto es, al retirar limitaciones tales como impedir la expansión del volumen del sistema, impedir el flujo de calor, etc.), el sistema tenderá a evolucionar de un estado de equilibrio a otro;​ comparando ambos estados de equilibrio, la termodinámica permite estudiar los procesos de intercambio de masa y energía térmica entre sistemas térmicos diferentes. Como ciencia fenomenológica, la termodinámica no se ocupa de ofrecer una interpretación física de sus magnitudes. La primera de ellas, la energía interna, se acepta como una manifestación macroscópica de las leyes de conservación de la energía a nivel microscópico, que permite caracterizar el estado energético del sistema macroscópico.​ El punto de partida para la mayor parte de las consideraciones termodinámicas son los que postulan que la energía se puede intercambiar entre sistemas en forma de calor o trabajo, y que solo se puede hacer de una determinada manera. También se introduce una magnitud llamada entropía,​ que se define como aquella función extensiva de la energía interna, el volumen y la composición molar que toma valores máximos en equilibrio: el principio de maximización de la entropía define el sentido en el que el sistema evoluciona de un estado de equilibrio a otro.​ Es la mecánica estadística, íntimamente relacionada con la termodinámica, la que ofrece una interpretación física de ambas magnitudes: la energía interna se identifica con la suma de las energías individuales de los átomos y moléculas del sistema, y la entropía mide el grado de orden y el estado dinámico de los sistemas, y tiene una conexión muy fuerte con la teoría de información.​ En la termodinámica se estudian y clasifican las interacciones entre diversos sistemas, lo que lleva a definir conceptos como sistema termodinámico y su contorno. Un sistema termodinámico se caracteriza por sus propiedades, relacionadas entre sí mediante las ecuaciones de estado. Estas se pueden combinar para expresar la energía interna y los potenciales termodinámicos, útiles para determinar las condiciones de equilibrio entre sistemas y los procesos espontáneos. Con estas herramientas, la termodinámica describe cómo los sistemas reaccionan a los cambios en su entorno. Esto se puede aplicar a una amplia variedad de ramas de la ciencia y de la ingeniería, tales como motores, cambios de fase, reacciones químicas, fenómenos de transporte e incluso agujeros negros. (es)
  • La thermodynamique est la science qui traite des transferts d’énergie d’un état initial (I) à un état final (F) (principe 1). Pour l’évolution entre l’état initial et final, cette science est préoccupée par les échanges de chaleurs et la variable entropie (principe 2). La thermodynamique est fondée sur 4 postulats décrivant le cadre mathématique des 2 principes fondamentaux (principes 1 et 2). Les autres principes (0 et 3) sont redondants. (fr)
  • Staidéar ar theas is feiniméin atá bunaithe ar an teas, agus 4 dhlí bunúsach na teirmidinimice. De réir an dlí nialasaigh, má bhíonn dhá chóras i gcothromaíocht theirmidinimiciúil leis an 3ú ceann, beidh siad i gcothromaíocht le chéile. Mar shampla, má fhágtar dhá réad i seomra socair ar feadh achair, tiocfaidh siad chuig teocht an tseomra, agus mar sin, beidh siad araon ag an teocht chéanna. De réir an chéad dlí, is nialas suim na n-athruithe fuinnimh taobh istigh de chóras aonraithe, is é sin go n-imchoimeádtar an fuinneamh iomlán ann. Mar shampla, is féidir bataire a úsáid chun uisce a théamh go leictreach, an fuinneamh ceimiceach sa bhataire tiontaithe ina fhuinneamh leictreach sa bhataire, agus an fuinneamh leictreach tiontaithe ina theas sa téitheoir friotaíochta san uisce. Sa chás seo, is ionann fuinneamh iomlán an chórais ag deireadh an phróisis is ag a thús. Cuirtear síos ar an dara dlí ar bhealaí éagsúla. Bealach amháin is ea nach féidir le hinneall teasa éifeacht 100% a bhaint amach, is é sin, ní féidir teas a thiontú go hiomlán go dtí fuinneamh meicniúil. Uaidh seo, ní féidir éifeacht 100% a bheith ag inneall gluaisteáin nó stáisiún ginte cumhachta, is cuma conas a thógtar iad. Bealach eile leis an dara dlí a rá is ea nach féidir teas a aistriú ó réad fuar go dtí réad te gan ionchur fuinnimh nó oibre. Mar shampla, bíonn gá le cuisneoir fuinnmhithe chun ábhar a fhuarú, ach má chuirtear réad fuar i seomra te, éireoidh an réad sin te ann féin go mbaineann sé teocht an tseomra amach. Bealach eile fós is ea go mbainfidh córas amach an staid is féidir leis a bhaint amach ar an líon slite is mó is féidir. Mar shampla, má shiltear braon dúigh in eascra uisce, scaipfidh an dúch go cothrom san uisce, staid a fhreagraíonn d'uasmhéid eagair adamh an dúigh is an uisce. Bealach eile fós leis an dara dlí a scríobh is ea, maidir le córas iata, go bhfanann eantrópacht an chórais tairiseach nó méadaíonn sí, agus ní théann i laghad ar chor ar bith. De réir an 3ú dlí, ní féidir dearbhnialas teochta a bhaint amach riamh. Roimh an 19ú céad cheaptaí gur ábhar substaintiúil an teas, a dtugtaí calrach air, agus go raibh níos mó calraigh ag réada teo ná ag réada fuara. Benjamin Thompson a thug an coincheap is an tuiscint nua-aoiseach isteach i 1798 gur foirm fuinnimh a bhí sa teas. Thuig Sadi Carnot coincheap imchoimeád an fhuinnimh i 1830. Thaispeáin James Joule tiontú fuinnimh mheicniúil go dtí teas, is an choibhéis idir teas is fuinneamh meicniúil, i 1845, le trealamh inar thit meáchain chun liáin, tumtha in uisce, a rothlú is an t-uisce a théamh. Mhol Hermann von Helmholtz i 1847 gur coibhéiseach gach foirm fuinnimh. Thug William Thomson (Tiarna Chaolbheinn) an dearbhscála teochta (atá ainmnithe as) chun cinn i 1845. Thomson (i 1851) agus Rudolf Clausius (i 1850) a shaothraigh dara dlí na teirmidinimice. Thug Thomson an tuiscint isteach go scaipeann fuinneamh meicniúil ina theas, agus d'fhorbair Clausius an tuiscint seo go dtí coincheap na heantrópachta. Tá an chuid is mó den teirmidinimic chlasaiceach, ina samhlaítear iompar córais ina iomláine gan a shonraí micreascópacha a chur san áireamh, bunaithe ar shaothar na beirte seo. Tugtar teirmidinimic staitistiúil ar an staidéar nuair a phléitear córas mar seo ar an mbunús go bhfuil sé comhdhéanta as líon ollmhór adamh scoite. (ga)
  • Termodinamika (bahasa Yunani: thermos = 'panas' and dynamic = 'perubahan') adalah fisika energi, panas, , dan kespontanan proses. Termodinamika berhubungan dekat dengan mekanika statistik di mana hubungan termodinamika berasal. Pada sistem tempat terjadinya proses perubahan wujud atau pertukaran energi, termodinamika klasik tidak berhubungan dengan (kecepatan suatu proses reaksi berlangsung). Karena itu, penggunaan istilah "termodinamika" biasanya merujuk pada termodinamika setimbang, yang mana konsep utamanya adalah , yang diidealkan. Sementara itu, termodinamika bergantung-waktu adalah . Karena termodinamika tidak berhubungan dengan konsep waktu, telah diusulkan bahwa termodinamika setimbang seharusnya dinamakan termostatik. Hukum termodinamika kebenarannya sangat umum, dan hukum-hukum ini tidak bergantung kepada rincian dari interaksi atau sistem yang diteliti. Ini berarti mereka dapat diterapkan ke sistem di mana seseorang tidak tahu apa pun kecuali perimbangan transfer energi dan wujud di antara mereka dan lingkungan. Contohnya termasuk perkiraan Einstein tentang dalam abad ke-20 dan riset sekarang ini tentang . (in)
  • La termodinamica è la branca della fisica classica e della chimica che studia e descrive le trasformazioni termodinamiche indotte dal calore e dal lavoro in un sistema termodinamico, in seguito a processi che coinvolgono cambiamenti delle variabili di stato temperatura ed energia (in particolare studia le trasformazioni da calore a lavoro e viceversa). La termodinamica classica si basa sul concetto di sistema macroscopico, ovvero una porzione di massa fisicamente o concettualmente separata dall'ambiente esterno, che spesso per comodità si assume non perturbato dallo scambio di energia con il sistema (sistema isolato): lo stato di un sistema macroscopico che si trova in condizione di equilibrio è specificato da grandezze dette variabili termodinamiche o funzioni di stato come temperatura, pressione, volume e composizione chimica. Le principali notazioni in termodinamica chimica sono state stabilite dalla unione internazionale di chimica pura e applicata. Tuttavia esiste una branca della termodinamica, denominata termodinamica del non equilibrio che studia i processi termodinamici caratterizzati dal mancato raggiungimento di condizioni di equilibrio stabile. (it)
  • 熱力学(ねつりきがく、英: thermodynamics)は、物理学の一分野で、熱や物質の輸送現象やそれに伴う力学的な仕事についてを、系の巨視的性質から扱う学問。アボガドロ定数個程度の分子から成る物質の巨視的な性質を巨視的な物理量(エネルギー、温度、エントロピー、圧力、体積、物質量または、化学ポテンシャルなど)を用いて記述する。 熱力学には大きく分けて「平衡系の熱力学」と「非平衡系の熱力学」がある。「非平衡系の熱力学」はまだ、限られた状況でしか成り立たないような理論しかできていないので、単に「熱力学」と言えば、普通は「平衡系の熱力学」のことを指す。両者を区別する場合、平衡系の熱力学を平衡熱力学 (equilibrium thermodynamics)、非平衡系の熱力学を非平衡熱力学 (non-equilibrium thermodynamics) と呼ぶ。 ここでいう平衡 (equilibrium) とは熱力学的平衡、つまり熱平衡、力学的平衡、化学平衡の三者を意味し、系の熱力学的(巨視的)状態量が変化しない状態を意味する。 平衡熱力学は(すなわち通常の熱力学は)、系の平衡状態とそれぞれの平衡状態を結ぶ過程とによって特徴付ける。平衡熱力学において扱う過程は、その始状態と終状態が平衡状態であるということを除いて、系の状態に制限を与えない。 熱力学と関係の深い物理学の分野として統計力学がある。統計力学は熱力学を古典力学や量子力学の立場から説明する試みであり、熱力学と統計力学は体系としては独立している。しかしながら、系の平衡状態を統計力学的に記述し、系の状態の遷移については熱力学によって記述するといったように、一つの現象や定理に対して両者の結果を援用している。しかしながら、アインシュタインはこの手法を否定している。 (ja)
  • Thermodynamica (Oudgrieks thermos (θερμός), warmte, en dunamis (δύναμις), kracht), of warmteleer is het onderdeel van de natuurkunde dat de interacties bestudeert tussen grote verzamelingen van deeltjes op een macroscopisch niveau. De thermodynamica vindt zijn oorsprong in de praktische behoefte de efficiëntie van stoommachines te verbeteren. (nl)
  • Termodynamika – dział fizyki zajmujący się badaniem energetycznych efektów wszelkich przemian fizycznych i chemicznych, które wpływają na zmiany energii wewnętrznej analizowanych układów. Wbrew rozpowszechnionym sądom termodynamika nie zajmuje się wyłącznie przemianami cieplnymi, lecz także efektami energetycznymi reakcji chemicznych, przemian z udziałem jonów, przemianami fazowymi, a nawet przemianami jądrowymi i energią elektryczną. Podstawowym pojęciem termodynamiki jest układ termodynamiczny, czyli układ wzajemnie oddziaływających na siebie ciał, który, rozpatrywany jako całość, wykazuje pewne własności zwane termodynamicznymi parametrami stanu. Pojedyncza cząsteczka nie jest układem termodynamicznym, ale dostatecznie duża ich ilość już tak. Przykładowym układem termodynamicznym jest pojemnik z gazem doskonałym, który w przybliżony sposób oddaje zachowanie rzeczywistych gazów. * Rodzaje termodynamiki * Termodynamika klasyczna * * Termodynamika statystyczna * Termodynamika techniczna * Termodynamika chemiczna * * Podstawowe pojęcia termodynamiki:równanie Clapeyrona (stan gazu idealnego), równanie Clapeyrona (przemiana fazowa), równanie Clausiusa-Clapeyrona, energia wewnętrzna, energia swobodna, stan termodynamiczny, funkcja stanu, funkcja procesu, potencjały termodynamiczne, ciśnienie, temperatura, objętość, ciepło, ciepło właściwe, entalpia, entropia, egzergia, perpetuum mobile, równanie van der Waalsa, gaz doskonały, roztwór doskonały, kryształ doskonały, układ termodynamiczny, układ termodynamicznie zamknięty, układ termodynamicznie otwarty, układ termodynamicznie izolowany * Zasady termodynamiki * Zerowa zasada termodynamiki = prawo równocenności stanów układów termodynamicznych. * Pierwsza zasada termodynamiki = prawo zachowania energii * Druga zasada termodynamiki = prawo stałego wzrostu entropii * Trzecia zasada termodynamiki = prawo dążenia entropii do 0 ze spadkiem temperatury. * Czwarta zasada termodynamiki = symetria macierzy współczynników w twierdzeniu Onsagera. Fizycznie rzecz biorąc, związana z zasadą wzajemności. * Klasyfikacja przemian termodynamicznych * przemiana izobaryczna (stałe ciśnienie p = const.) * przemiana izotermiczna (stała temperatura T = const.) * przemiana izochoryczna (stała objętość V = const.) * przemiana adiabatyczna (brak wymiany ciepła z otoczeniem Q = const.) * przemiana politropowa (pVn = const., gdzie n wykładnik politropy) * przemiana izentalpowa (stałe entalpia H = const.) * Klasyfikacja procesów termodynamicznych * odwracalny * nieodwracalny * samorzutny * kwazistatyczny (pl)
  • A termodinâmica (do grego θερμη, therme, significa "calor"e δυναμις, dynamis, significa "potência") é o ramo da física que estuda as causas e os efeitos de mudanças na temperatura, pressão e volume — e de outras grandezas termodinâmicas fundamentais em casos menos gerais — em sistemas físicos em escala macroscópica. Grosso modo, calor significa "energia" em trânsito, e dinâmica se relaciona com "movimento". Por isso, em essência, a termodinâmica estuda o movimento da energia e como a energia cria movimento. Historicamente, a termodinâmica se desenvolveu pela necessidade de aumentar a eficiência das primeiras máquinas a vapor,sendo em essência uma ciência experimental, que diz respeito apenas a propriedades macroscópicas ou de grande escala da matéria e energia. (pt)
  • Термодина́мика (греч. θέρμη — «тепло», δύναμις — «сила») — раздел физики, изучающий наиболее общие свойства макроскопических систем и способы передачи и превращения энергии в таких системах. В термодинамике изучаются состояния и процессы, для описания которых можно ввести понятие температуры. Термодинамика — это феноменологическая наука, опирающаяся на обобщения опытных фактов. Процессы, происходящие в термодинамических системах, описываются макроскопическими величинами (температура, давление, концентрации компонентов), которые вводятся для описания систем, состоящих из большого числа частиц, и не применимы к отдельным молекулам и атомам, в отличие, например, от величин, вводимых в механике или электродинамике. Современная феноменологическая термодинамика является строгой теорией, развиваемой на основе нескольких постулатов. Однако связь этих постулатов со свойствами и законами взаимодействия частиц, из которых построены термодинамические системы, даётся статистической физикой. Статистическая физика позволяет выяснить также и границы применимости термодинамики. Законы термодинамики носят общий характер и не зависят от конкретных деталей строения вещества на атомарном уровне. Поэтому термодинамика успешно применяется в широком круге вопросов науки и техники, таких как энергетика, теплотехника, фазовые переходы, химические реакции, явления переноса и даже чёрные дыры. Термодинамика имеет важное значение для самых разных областей физики и химии, химической технологии, аэрокосмической техники, машиностроения, клеточной биологии, биомедицинской инженерии, материаловедения и находит своё применение даже в таких областях, как экономика. (ru)
  • Termodynamik är läran om energi, dess omvandling mellan olika former och särskilt samspelet mellan värme och arbete. Den klassiska termodynamiken studerar kopplingen mellan makroskopiska egenskaper som temperatur, volym och tryck hos system samt hur dessa påverkas och förändras genom termodynamiska processer. Termodynamikens grundprinciper har under åren kommit att formuleras i fyra huvudsatser, vilka beskriver olika aspekter av energins natur och hur olika former av energi kan interagera.Historiskt har termodynamikens utveckling drivits av önskan att öka verkningsgraden hos tidiga ångmaskiner, framför allt genom det arbete som bedrevs av den franske fysikern Sadi Carnot, ofta kallad termodynamikens fader. Termodynamikens fortsatta utveckling och formuleringen av första och andra huvudsatsen skedde under 1800-talet, med Lord Kelvin, Rudolf Clausius och William Rankine som några framträdande bidragsgivare. Begreppet termodynamik formulerades först 1849 i ett verk av Lord Kelvin. Termodynamiken är en bred vetenskap som ofta delas upp i olika grenar. Huvudsatserna och många av de centrala begreppen är de samma inom de olika disciplinerna, men angreppssätten och användningsområdena skiljer sig. Den klassiska termodynamiken är en makroskopisk disciplin, till stor del baserad på mätningar och erfarenheter. I motsats bygger den statistiska termodynamiken, med grund i kvantmekaniken, på den mikroskopiska naturen hos enskilda atomer och molekyler. Utöver dessa finns ett stort antal grenar och tillämpningsområden som exempelvis kemisk termodynamik, energiteknik, meteorologi, materialvetenskap och biomedicin. (sv)
  • Термодинáміка — розділ класичної фізики, що вивчає найбільш загальні властивості макроскопічних систем і способи передачі і перетворення енергії в таких системах. Загальна феноменологічна наука про енергію, яка досліджує різноманітні явища природи (фізичні, хімічні, біологічні, космічні і т. ін.) у світлі основних законів (начал) термодинаміки. Термодинаміка і статистична фізика вивчають теплову форму руху матерії, однак, істотна різниця між ними полягає в методах дослідження. Термодинаміка не використовує ніяких гіпотез, тобто припущень, що вимагають подальшої дослідної перевірки. Зокрема, термодинаміка не використовує ніяких гіпотез і теорій будови речовини. Статистична фізика, навпаки, з самого початку спирається на молекулярні уявлення про будову фізичних систем, широко застосовуючи методи теорії ймовірностей. Метод термодинаміки — дедуктивний. Він полягає в строгому математичному розвитку постулатів термодинаміки — початкових аксіом, що є узагальненням загальнолюдського досвіду пізнання природи і допускають пряму експериментальну перевірку в усіх областях природознавства. З цієї причини висновки, до яких приходить термодинаміка, мають таку ж міру достовірності, як і закони, що лежать в її основі. Зародившись як наука про перетворення теплоти на роботу (технічна термодинаміка), термодинаміка стала проникати в найрізноманітніші галузі науки і техніки. Таким чином народилися такі відносно самостійні її розділи як фізична (загальна) термодинаміка, хімічна термодинаміка, біологічна термодинаміка, термодинаміка чорних дір, тощо. (uk)
  • 热力学,全稱熱動力學(法語:thermodynamique,德語:Thermodynamik,英語:thermodynamics,源於古希腊语θερμός及δύναμις),是研究热现象中物态转变和能量转换规律的学科。它着重研究物质的平衡状态以及与準平衡态的物理、化学过程。热力学定義許多巨觀的物理量(像溫度、內能、熵、壓強等),描述各物理量之間的關係。热力学描述數量非常多的微觀粒子的平均行為,其定律可以用統計力學推導而得。 熱力學可以總結為四條定律: * 熱力學第零定律定義了温度這一物理量,指出了相互接觸的两个系統,熱流的方向。 * 熱力學第一定律指出内能這一物理量的存在,並且與系統整體運動的動能和系統與環境相互作用的位能是不同的,區分出熱與功的轉換。 * 熱力學第二定律涉及的物理量是温度和熵。熵是研究不可逆过程引入的物理量,表征系統透過熱力學過程向外界最多可以做多少熱力學功。 * 熱力學第三定律認為,不可能透過有限過程使系統冷却到絕對零度。 熱力學可以應用在許多科學及工程的領域中,例如:引擎、相變化、化學反應、輸運現象甚至是黑洞。熱力學計算的結果不但對物理的其他領域很重要,對航空工程、航海工程、車輛工程、機械工程、細胞生物學、生物醫學工程、化學、化學工程及材料科學等科學技術領域也很重要,甚至也可以應用在經濟學中,另見「熱經濟學」。 热力学是从18世纪末期发展起来的理论,主要是研究功與热量之間的能量轉換;在此功定義為力與位移的內積;而熱則定義為在熱力系統邊界中,由溫度之差所造成的能量傳遞。兩者都不是存在於熱力系統內的性質,而是在熱力過程中所產生的。 熱力學的研究一開始是為了提昇蒸汽引擎的效率,早期尼古拉·卡諾有許多的貢獻,他認為若引擎效率提昇,法國有可能贏得拿破崙戰爭。出生於愛爾蘭的英國科學家開爾文在1854年首次提出了熱力學明確的定義: 一開始熱力學研究關注在熱機中工質(如蒸氣)的熱力學性質,後來延伸到化学过程中的能量轉移,例如在1840年科學家杰迈因·亨利·盖斯提出,有關化學反應的能量轉移的研究。化學熱力學中研究熵對化學反應的影響 。統計熱力學也稱為統計力學,利用根據微觀粒子力學性質的統計學預測來解釋巨觀的熱力學性質。 (zh)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 29952 (xsd:integer)
dbo:wikiPageLength
  • 41976 (xsd:integer)
dbo:wikiPageRevisionID
  • 985074795 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dct:isPartOf
dct:subject
rdfs:comment
  • Termodinamika (grezieraz τερμον "beroa" eta δυναμις "dinamika") beroa eta lana, eta sistema makroskopikoetan hauek duten eragina aztertzen dituen fisikaren arloa da, sistema osatzen duten partikulen mugimenduak estatistikoki analizatuz. (eu)
  • La thermodynamique est la science qui traite des transferts d’énergie d’un état initial (I) à un état final (F) (principe 1). Pour l’évolution entre l’état initial et final, cette science est préoccupée par les échanges de chaleurs et la variable entropie (principe 2). La thermodynamique est fondée sur 4 postulats décrivant le cadre mathématique des 2 principes fondamentaux (principes 1 et 2). Les autres principes (0 et 3) sont redondants. (fr)
  • Thermodynamica (Oudgrieks thermos (θερμός), warmte, en dunamis (δύναμις), kracht), of warmteleer is het onderdeel van de natuurkunde dat de interacties bestudeert tussen grote verzamelingen van deeltjes op een macroscopisch niveau. De thermodynamica vindt zijn oorsprong in de praktische behoefte de efficiëntie van stoommachines te verbeteren. (nl)
  • A termodinâmica (do grego θερμη, therme, significa "calor"e δυναμις, dynamis, significa "potência") é o ramo da física que estuda as causas e os efeitos de mudanças na temperatura, pressão e volume — e de outras grandezas termodinâmicas fundamentais em casos menos gerais — em sistemas físicos em escala macroscópica. Grosso modo, calor significa "energia" em trânsito, e dinâmica se relaciona com "movimento". Por isso, em essência, a termodinâmica estuda o movimento da energia e como a energia cria movimento. Historicamente, a termodinâmica se desenvolveu pela necessidade de aumentar a eficiência das primeiras máquinas a vapor,sendo em essência uma ciência experimental, que diz respeito apenas a propriedades macroscópicas ou de grande escala da matéria e energia. (pt)
  • الديناميكا الحرارية أو التحريك الحراري أو الثرموديناميك (باللاتينية: Thermodynamica) هو أحد فروع الميكانيكا الإحصائية الذي يدرس خواص انتقال الشكل الحراري للطاقة وتحولاته إلى أوجه أخرى منها، مثل تحول الطاقة الحرارية إلى طاقة ميكانيكية مثلما في محرك احتراق داخلي والآلة البخارية، أو تحول الطاقة الحرارية إلى طاقة كهربائية مثلما في محطات القوى، وتحول الطاقة الحركية إلى طاقة كهربائية كما في توليد الكهرباء من السدود والأنهار. (ar)
  • La termodinàmica (del grec θερμo-, thérmë, que significa "calor" i δύναμις, dynamis, que significa "força") és una branca de la física que estudia els efectes dels canvis de la temperatura, pressió i volum dels sistemes físics a un nivell macroscòpic. Aproximadament, calor significa "energia en trànsit" i dinàmica es refereix al "moviment", per la qual cosa, en essència, la termodinàmica estudia la circulació de l'energia i com l'energia infon moviment. Així, estudia els fenòmens físics relacionats amb la calor i la temperatura, és a dir, el moviment desordenat de les partícules que formen la matèria. Històricament, la termodinàmica es va desenvolupar a partir de la necessitat d'augmentar l'eficiència de les primeres màquines de vapor. (ca)
  • Termodynamika je obor fyziky, který se zabývá procesy a vlastnostmi látek a polí spojených s teplem a tepelnými jevy; je součástí termiky. Vychází přitom z obecných principů přeměny energie, které jsou popsány čtyřmi termodynamickými zákony (z historických důvodů číslovány nultý až třetí). Termodynamika se dále dělí na studium rovnovážných a nerovnovážných procesů. Historicky byl vývoj termodynamiky veden touhou zvýšit efektivitu prvních parních strojů, čímž se zabývala klíčová práce Úvahy o hybné síle ohně francouzského fyzika Sadiho Carnota, často nazývaného otcem termodynamiky. O další rozvoj termodynamiky se zasadila formulace prvního a druhého zákona termodynamiky, na nichž se podíleli především William Thomson, pozdější lord Kelvin, Rudolf Clausius a William Rankine. Samotný termín t (cs)
  • Die Thermodynamik (von altgriechisch θερμός thermós, deutsch ‚warm‘, sowie altgriechisch δύναμις dýnamis, deutsch ‚Kraft‘) oder Wärmelehre ist eine natur- und ingenieurwissenschaftliche Disziplin. Sie hat ihren Ursprung im Studium der Dampfmaschinen und ging der Frage nach, wie man Wärme in mechanische Arbeit umwandeln kann. Dazu beschreibt sie Systeme aus hinreichend vielen Teilchen und deren Zustandsübergänge anhand von makroskopischen Zustandsgrößen, die statistische Funktionen der detaillierten Vielteilchenzustände darstellen. Als Ingenieurwissenschaft hat sie für die verschiedenen Möglichkeiten der Energie­umwandlung Bedeutung und in der Verfahrenstechnik beschreibt sie Eigenschaften und das Verhalten von Stoffen, die an Prozessen beteiligt sind. Als Begründer gilt der französische Ph (de)
  • Η Θερμοδυναμική είναι η μελέτη της μετατροπής της ενέργειας από μηχανική ενέργεια -έργο- σε θερμότητα και αντίστροφα, μέσα από τη μελέτη των θερμικών διεργασιών. Με τον όρο διεργασία εννοούμε την μετάβαση από τη μια κατάσταση ενός συστήματος σε μια άλλη. Η Θερμοδυναμική ασχολείται μόνο με την μακροσκοπική απόκριση των συστημάτων που την αποτελούν, την οποία και μπορούμε να υπολογίσουμε πειραματικά. Η Θερμοδυναμική σήμερα αποτελεί έναν πολύ βασικό κλάδο της Φυσικής, με πολλές εφαρμογές σε άλλες επιστήμες, και διδάσκεται ως προπτυχιακό μάθημα σε επιστήμονες και μηχανικούς σε όλο τον κόσμο. (el)
  • Thermodynamics is a branch of physics that deals with heat, work, and temperature, and their relation to energy, radiation, and properties of matter. The behavior of these quantities is governed by the four laws of thermodynamics which convey a quantitative description using measurable macroscopic physical quantities, but may be explained in terms of microscopic constituents by statistical mechanics. Thermodynamics applies to a wide variety of topics in science and engineering, especially physical chemistry, chemical engineering and mechanical engineering, but also in other complex fields such as meteorology. (en)
  • Varmodinamiko aŭ termodinamiko estas la parto de fiziko aŭ fizika kemio pri makroskopa priskribo de sistemoj kun multegaj nombroj da mikroskopaj gradoj de libereco per makroskopaj propraĵoj de tiaj sistemoj kiel temperaturo, volumeno, premo, ktp. (eo)
  • La termodinámica es la rama de la física que describe los estados de equilibrio termodinámico a nivel macroscópico. El Diccionario de la lengua española de la Real Academia, por su parte, define la termodinámica como la rama de la física encargada del estudio de la interacción entre el calor y otras manifestaciones de la energía.​ Constituye una teoría fenomenológica, a partir de razonamientos deductivos, que estudia sistemas reales, sin modelizar y sigue un método experimental.​ Los estados de equilibrio se estudian y definen por medio de magnitudes extensivas tales como la energía interna, la entropía, el volumen o la composición molar del sistema,​ o por medio de magnitudes no-extensivas derivadas de las anteriores como la temperatura, presión y el potencial químico; otras magnitudes, t (es)
  • Staidéar ar theas is feiniméin atá bunaithe ar an teas, agus 4 dhlí bunúsach na teirmidinimice. De réir an dlí nialasaigh, má bhíonn dhá chóras i gcothromaíocht theirmidinimiciúil leis an 3ú ceann, beidh siad i gcothromaíocht le chéile. Mar shampla, má fhágtar dhá réad i seomra socair ar feadh achair, tiocfaidh siad chuig teocht an tseomra, agus mar sin, beidh siad araon ag an teocht chéanna. Bealach eile fós leis an dara dlí a scríobh is ea, maidir le córas iata, go bhfanann eantrópacht an chórais tairiseach nó méadaíonn sí, agus ní théann i laghad ar chor ar bith. (ga)
  • Termodinamika (bahasa Yunani: thermos = 'panas' and dynamic = 'perubahan') adalah fisika energi, panas, , dan kespontanan proses. Termodinamika berhubungan dekat dengan mekanika statistik di mana hubungan termodinamika berasal. Pada sistem tempat terjadinya proses perubahan wujud atau pertukaran energi, termodinamika klasik tidak berhubungan dengan (kecepatan suatu proses reaksi berlangsung). Karena itu, penggunaan istilah "termodinamika" biasanya merujuk pada termodinamika setimbang, yang mana konsep utamanya adalah , yang diidealkan. Sementara itu, termodinamika bergantung-waktu adalah . (in)
  • La termodinamica è la branca della fisica classica e della chimica che studia e descrive le trasformazioni termodinamiche indotte dal calore e dal lavoro in un sistema termodinamico, in seguito a processi che coinvolgono cambiamenti delle variabili di stato temperatura ed energia (in particolare studia le trasformazioni da calore a lavoro e viceversa). Tuttavia esiste una branca della termodinamica, denominata termodinamica del non equilibrio che studia i processi termodinamici caratterizzati dal mancato raggiungimento di condizioni di equilibrio stabile. (it)
  • 熱力学(ねつりきがく、英: thermodynamics)は、物理学の一分野で、熱や物質の輸送現象やそれに伴う力学的な仕事についてを、系の巨視的性質から扱う学問。アボガドロ定数個程度の分子から成る物質の巨視的な性質を巨視的な物理量(エネルギー、温度、エントロピー、圧力、体積、物質量または、化学ポテンシャルなど)を用いて記述する。 熱力学には大きく分けて「平衡系の熱力学」と「非平衡系の熱力学」がある。「非平衡系の熱力学」はまだ、限られた状況でしか成り立たないような理論しかできていないので、単に「熱力学」と言えば、普通は「平衡系の熱力学」のことを指す。両者を区別する場合、平衡系の熱力学を平衡熱力学 (equilibrium thermodynamics)、非平衡系の熱力学を非平衡熱力学 (non-equilibrium thermodynamics) と呼ぶ。 ここでいう平衡 (equilibrium) とは熱力学的平衡、つまり熱平衡、力学的平衡、化学平衡の三者を意味し、系の熱力学的(巨視的)状態量が変化しない状態を意味する。 平衡熱力学は(すなわち通常の熱力学は)、系の平衡状態とそれぞれの平衡状態を結ぶ過程とによって特徴付ける。平衡熱力学において扱う過程は、その始状態と終状態が平衡状態であるということを除いて、系の状態に制限を与えない。 (ja)
  • Termodynamika – dział fizyki zajmujący się badaniem energetycznych efektów wszelkich przemian fizycznych i chemicznych, które wpływają na zmiany energii wewnętrznej analizowanych układów. Wbrew rozpowszechnionym sądom termodynamika nie zajmuje się wyłącznie przemianami cieplnymi, lecz także efektami energetycznymi reakcji chemicznych, przemian z udziałem jonów, przemianami fazowymi, a nawet przemianami jądrowymi i energią elektryczną. (pl)
  • Термодина́мика (греч. θέρμη — «тепло», δύναμις — «сила») — раздел физики, изучающий наиболее общие свойства макроскопических систем и способы передачи и превращения энергии в таких системах. В термодинамике изучаются состояния и процессы, для описания которых можно ввести понятие температуры. Термодинамика — это феноменологическая наука, опирающаяся на обобщения опытных фактов. Процессы, происходящие в термодинамических системах, описываются макроскопическими величинами (температура, давление, концентрации компонентов), которые вводятся для описания систем, состоящих из большого числа частиц, и не применимы к отдельным молекулам и атомам, в отличие, например, от величин, вводимых в механике или электродинамике. (ru)
  • Termodynamik är läran om energi, dess omvandling mellan olika former och särskilt samspelet mellan värme och arbete. Den klassiska termodynamiken studerar kopplingen mellan makroskopiska egenskaper som temperatur, volym och tryck hos system samt hur dessa påverkas och förändras genom termodynamiska processer. Termodynamikens grundprinciper har under åren kommit att formuleras i fyra huvudsatser, vilka beskriver olika aspekter av energins natur och hur olika former av energi kan interagera.Historiskt har termodynamikens utveckling drivits av önskan att öka verkningsgraden hos tidiga ångmaskiner, framför allt genom det arbete som bedrevs av den franske fysikern Sadi Carnot, ofta kallad termodynamikens fader. Termodynamikens fortsatta utveckling och formuleringen av första och andra huvudsats (sv)
  • Термодинáміка — розділ класичної фізики, що вивчає найбільш загальні властивості макроскопічних систем і способи передачі і перетворення енергії в таких системах. Загальна феноменологічна наука про енергію, яка досліджує різноманітні явища природи (фізичні, хімічні, біологічні, космічні і т. ін.) у світлі основних законів (начал) термодинаміки. Термодинаміка і статистична фізика вивчають теплову форму руху матерії, однак, істотна різниця між ними полягає в методах дослідження. Термодинаміка не використовує ніяких гіпотез, тобто припущень, що вимагають подальшої дослідної перевірки. Зокрема, термодинаміка не використовує ніяких гіпотез і теорій будови речовини. Статистична фізика, навпаки, з самого початку спирається на молекулярні уявлення про будову фізичних систем, широко застосовуючи м (uk)
  • 热力学,全稱熱動力學(法語:thermodynamique,德語:Thermodynamik,英語:thermodynamics,源於古希腊语θερμός及δύναμις),是研究热现象中物态转变和能量转换规律的学科。它着重研究物质的平衡状态以及与準平衡态的物理、化学过程。热力学定義許多巨觀的物理量(像溫度、內能、熵、壓強等),描述各物理量之間的關係。热力学描述數量非常多的微觀粒子的平均行為,其定律可以用統計力學推導而得。 熱力學可以總結為四條定律: * 熱力學第零定律定義了温度這一物理量,指出了相互接觸的两个系統,熱流的方向。 * 熱力學第一定律指出内能這一物理量的存在,並且與系統整體運動的動能和系統與環境相互作用的位能是不同的,區分出熱與功的轉換。 * 熱力學第二定律涉及的物理量是温度和熵。熵是研究不可逆过程引入的物理量,表征系統透過熱力學過程向外界最多可以做多少熱力學功。 * 熱力學第三定律認為,不可能透過有限過程使系統冷却到絕對零度。 熱力學可以應用在許多科學及工程的領域中,例如:引擎、相變化、化學反應、輸運現象甚至是黑洞。熱力學計算的結果不但對物理的其他領域很重要,對航空工程、航海工程、車輛工程、機械工程、細胞生物學、生物醫學工程、化學、化學工程及材料科學等科學技術領域也很重要,甚至也可以應用在經濟學中,另見「熱經濟學」。 (zh)
rdfs:label
  • Thermodynamics (en)
  • ديناميكا حرارية (ar)
  • Termodinàmica (ca)
  • Termodynamika (cs)
  • Thermodynamik (de)
  • Θερμοδυναμική (el)
  • Termodinamiko (eo)
  • Termodinámica (es)
  • Termodinamika (eu)
  • Thermodynamique (fr)
  • Teirmidinimic (ga)
  • Termodinamika (in)
  • Termodinamica (it)
  • 熱力学 (ja)
  • Thermodynamica (nl)
  • Termodynamika (pl)
  • Termodinâmica (pt)
  • Термодинамика (ru)
  • Termodynamik (sv)
  • Термодинаміка (uk)
  • 热力学 (zh)
owl:sameAs
skos:closeMatch
skos:exactMatch
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:academicDiscipline of
is dbo:industry of
is dbo:knownFor of
is dbo:mainInterest of
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is dbp:areaServed of
is dbp:discipline of
is dbp:field of
is dbp:fields of
is dbp:knownFor of
is dbp:mainInterests of
is dbp:workingPrinciple of
is rdfs:seeAlso of
is foaf:primaryTopic of