In parallel computer architectures, a systolic array is a homogeneous network of tightly coupled data processing units (DPUs) called cells or nodes. Each node or DPU independently computes a partial result as a function of the data received from its upstream neighbors, stores the result within itself and passes it downstream. Systolic arrays were invented by H. T. Kung and Charles Leiserson who described arrays for many dense linear algebra computations (matrix product, solving systems of linear equations, LU decomposition, etc.) for banded matrices. Early applications include computing greatest common divisors of integers and polynomials. They are sometimes classified as multiple-instruction single-data (MISD) architectures under Flynn's taxonomy, but this classification is questionable b

Property Value
dbo:abstract
• In parallel computer architectures, a systolic array is a homogeneous network of tightly coupled data processing units (DPUs) called cells or nodes. Each node or DPU independently computes a partial result as a function of the data received from its upstream neighbors, stores the result within itself and passes it downstream. Systolic arrays were invented by H. T. Kung and Charles Leiserson who described arrays for many dense linear algebra computations (matrix product, solving systems of linear equations, LU decomposition, etc.) for banded matrices. Early applications include computing greatest common divisors of integers and polynomials. They are sometimes classified as multiple-instruction single-data (MISD) architectures under Flynn's taxonomy, but this classification is questionable because a strong argument can be made to distinguish systolic arrays from any of Flynn's four categories: SISD, SIMD, MISD, MIMD, as discussed later in this article. The parallel input data flows through a network of hard-wired processor nodes, which combine, process, merge or sort the input data into a derived result. Because the wave-like propagation of data through a systolic array resembles the pulse of the human circulatory system, the name systolic was coined from medical terminology. The name is derived from systole as an analogy to the regular pumping of blood by the heart. (en)
dbo:wikiPageID
• 351517 (xsd:integer)
dbo:wikiPageLength
• 12692 (xsd:integer)
dbo:wikiPageRevisionID
• 979848052 (xsd:integer)
dbp:wikiPageUsesTemplate
dct:subject
rdfs:comment
• In parallel computer architectures, a systolic array is a homogeneous network of tightly coupled data processing units (DPUs) called cells or nodes. Each node or DPU independently computes a partial result as a function of the data received from its upstream neighbors, stores the result within itself and passes it downstream. Systolic arrays were invented by H. T. Kung and Charles Leiserson who described arrays for many dense linear algebra computations (matrix product, solving systems of linear equations, LU decomposition, etc.) for banded matrices. Early applications include computing greatest common divisors of integers and polynomials. They are sometimes classified as multiple-instruction single-data (MISD) architectures under Flynn's taxonomy, but this classification is questionable b (en)
rdfs:label
• Systolic array (en)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of