An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In mathematics, particularly in algebra, the injective hull (or injective envelope) of a module is both the smallest injective module containing it and the largest essential extension of it. Injective hulls were first described in.

Property Value
dbo:abstract
  • In mathematics, particularly in algebra, the injective hull (or injective envelope) of a module is both the smallest injective module containing it and the largest essential extension of it. Injective hulls were first described in. (en)
  • 代数学において、加群 M の移入包絡 (いにゅうほうらく、英: injective hull、injective envelope) とは、 M を含む最小の移入加群でありかつ M の最大の本質拡大である。 (ja)
  • 在數學中,設 為一個含單位元環 (不一定可交換)上的左模,若左 -模 是內射模,而且滿足下式 (其中 是子模) 則稱 為 的一個內射包。類似定義可以照搬至右模的情況。 若模 的內射包可以寫成的有限直積,則稱 為有限秩的模。 (zh)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 665821 (xsd:integer)
dbo:wikiPageLength
  • 7673 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1040732900 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • In mathematics, particularly in algebra, the injective hull (or injective envelope) of a module is both the smallest injective module containing it and the largest essential extension of it. Injective hulls were first described in. (en)
  • 代数学において、加群 M の移入包絡 (いにゅうほうらく、英: injective hull、injective envelope) とは、 M を含む最小の移入加群でありかつ M の最大の本質拡大である。 (ja)
  • 在數學中,設 為一個含單位元環 (不一定可交換)上的左模,若左 -模 是內射模,而且滿足下式 (其中 是子模) 則稱 為 的一個內射包。類似定義可以照搬至右模的情況。 若模 的內射包可以寫成的有限直積,則稱 為有限秩的模。 (zh)
rdfs:label
  • Injective hull (en)
  • 移入包絡 (ja)
  • 內射包 (zh)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License