An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In abstract algebra, a module is called a uniform module if the intersection of any two nonzero submodules is nonzero. This is equivalent to saying that every nonzero submodule of M is an essential submodule. A ring may be called a right (left) uniform ring if it is uniform as a right (left) module over itself. In the literature, uniform dimension is also referred to as simply the dimension of a module or the rank of a module. Uniform dimension should not be confused with the related notion, also due to Goldie, of the of a module.

Property Value
dbo:abstract
  • In abstract algebra, a module is called a uniform module if the intersection of any two nonzero submodules is nonzero. This is equivalent to saying that every nonzero submodule of M is an essential submodule. A ring may be called a right (left) uniform ring if it is uniform as a right (left) module over itself. Alfred Goldie used the notion of uniform modules to construct a measure of dimension for modules, now known as the uniform dimension (or Goldie dimension) of a module. Uniform dimension generalizes some, but not all, aspects of the notion of the dimension of a vector space. Finite uniform dimension was a key assumption for several theorems by Goldie, including Goldie's theorem, which characterizes which rings are in a semisimple ring. Modules of finite uniform dimension generalize both Artinian modules and Noetherian modules. In the literature, uniform dimension is also referred to as simply the dimension of a module or the rank of a module. Uniform dimension should not be confused with the related notion, also due to Goldie, of the of a module. (en)
  • 抽象代数学において、加群は、任意の2つの0でない部分加群の共通部分が0でないときにユニフォーム加群 (uniform module) と呼ばれる。このことは M のすべての0でない部分加群が本質部分加群であると言っても同じである。環はそれ自身の上の右(左)加群としてユニフォームであるときに右(左)ユニフォーム環 (right (left) uniform ring) と呼ばれる。 はユニフォーム加群の概念を加群の次元のはかりかたを構成するために使った。今では加群のユニフォーム次元 (uniform dimension)(あるいは Goldie 次元 (Goldie dimension) として知られている。ユニフォーム次元はベクトル空間の次元の概念の側面をすべてではないがいくつか一般化する。有限ユニフォーム次元はどの環が半単純環において(right order)であるかを特徴づけるを含むいくつかの定理のための鍵となる仮定だった。有限ユニフォーム次元の加群はアルティン加群とネーター加群の両方を一般化する。 文献によってはユニフォーム次元はまた単に加群の次元 (dimension of a module) あるいは加群のランク (rank of a module) とも呼ばれる。ユニフォーム次元はこれも Goldie によるが関連した概念である加群のと混同してはならない。 (ja)
dbo:wikiPageID
  • 31553078 (xsd:integer)
dbo:wikiPageLength
  • 9623 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1083233248 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
gold:hypernym
rdfs:comment
  • 抽象代数学において、加群は、任意の2つの0でない部分加群の共通部分が0でないときにユニフォーム加群 (uniform module) と呼ばれる。このことは M のすべての0でない部分加群が本質部分加群であると言っても同じである。環はそれ自身の上の右(左)加群としてユニフォームであるときに右(左)ユニフォーム環 (right (left) uniform ring) と呼ばれる。 はユニフォーム加群の概念を加群の次元のはかりかたを構成するために使った。今では加群のユニフォーム次元 (uniform dimension)(あるいは Goldie 次元 (Goldie dimension) として知られている。ユニフォーム次元はベクトル空間の次元の概念の側面をすべてではないがいくつか一般化する。有限ユニフォーム次元はどの環が半単純環において(right order)であるかを特徴づけるを含むいくつかの定理のための鍵となる仮定だった。有限ユニフォーム次元の加群はアルティン加群とネーター加群の両方を一般化する。 文献によってはユニフォーム次元はまた単に加群の次元 (dimension of a module) あるいは加群のランク (rank of a module) とも呼ばれる。ユニフォーム次元はこれも Goldie によるが関連した概念である加群のと混同してはならない。 (ja)
  • In abstract algebra, a module is called a uniform module if the intersection of any two nonzero submodules is nonzero. This is equivalent to saying that every nonzero submodule of M is an essential submodule. A ring may be called a right (left) uniform ring if it is uniform as a right (left) module over itself. In the literature, uniform dimension is also referred to as simply the dimension of a module or the rank of a module. Uniform dimension should not be confused with the related notion, also due to Goldie, of the of a module. (en)
rdfs:label
  • 一様加群 (ja)
  • Uniform module (en)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License