An Entity of Type: mean of transportation, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In algebraic geometry, the homogeneous coordinate ring R of an algebraic variety V given as a subvariety of projective space of a given dimension N is by definition the quotient ring R = K[X0, X1, X2, ..., XN] / I where I is the homogeneous ideal defining V, K is the algebraically closed field over which V is defined, and K[X0, X1, X2, ..., XN]

Property Value
dbo:abstract
  • In algebraic geometry, the homogeneous coordinate ring R of an algebraic variety V given as a subvariety of projective space of a given dimension N is by definition the quotient ring R = K[X0, X1, X2, ..., XN] / I where I is the homogeneous ideal defining V, K is the algebraically closed field over which V is defined, and K[X0, X1, X2, ..., XN] is the polynomial ring in N + 1 variables Xi. The polynomial ring is therefore the homogeneous coordinate ring of the projective space itself, and the variables are the homogeneous coordinates, for a given choice of basis (in the vector space underlying the projective space). The choice of basis means this definition is not intrinsic, but it can be made so by using the symmetric algebra. (en)
  • 代数幾何学において、与えられた次元 N の射影空間の部分多様体として与えられる代数多様体 V の斉次座標環(せいじざひょうかん、homogeneous coordinate ring)R は定義によって商環 R = K[X0, X1, X2, ..., XN]/I ただし I は V を定義する斉次イデアル、K は V がそれ上定義されているような代数的閉体、そして K[X0, X1, X2, ..., XN] は N + 1 変数 Xi の多項式環である。したがって多項式環は射影空間自身の斉次座標環であり、変数は(射影空間の下にあるベクトル空間の)与えられた基底の選択のである。基底の選択はこの定義が intrinsic でないことを意味するが、対称代数を使ってそのようにすることができる。 (ja)
dbo:wikiPageID
  • 23833909 (xsd:integer)
dbo:wikiPageLength
  • 8678 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1090874151 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
gold:hypernym
rdf:type
rdfs:comment
  • 代数幾何学において、与えられた次元 N の射影空間の部分多様体として与えられる代数多様体 V の斉次座標環(せいじざひょうかん、homogeneous coordinate ring)R は定義によって商環 R = K[X0, X1, X2, ..., XN]/I ただし I は V を定義する斉次イデアル、K は V がそれ上定義されているような代数的閉体、そして K[X0, X1, X2, ..., XN] は N + 1 変数 Xi の多項式環である。したがって多項式環は射影空間自身の斉次座標環であり、変数は(射影空間の下にあるベクトル空間の)与えられた基底の選択のである。基底の選択はこの定義が intrinsic でないことを意味するが、対称代数を使ってそのようにすることができる。 (ja)
  • In algebraic geometry, the homogeneous coordinate ring R of an algebraic variety V given as a subvariety of projective space of a given dimension N is by definition the quotient ring R = K[X0, X1, X2, ..., XN] / I where I is the homogeneous ideal defining V, K is the algebraically closed field over which V is defined, and K[X0, X1, X2, ..., XN] (en)
rdfs:label
  • Homogeneous coordinate ring (en)
  • 斉次座標環 (ja)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License