An Entity of Type: WikicatStatisticalDistanceMeasures, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In probability and statistics, the Hellinger distance (closely related to, although different from, the Bhattacharyya distance) is used to quantify the similarity between two probability distributions. It is a type of f-divergence. The Hellinger distance is defined in terms of the Hellinger integral, which was introduced by Ernst Hellinger in 1909. It is sometimes called the Jeffreys distance.

Property Value
dbo:abstract
  • Der Hellingerabstand, auch Hellingermetrik genannt, ist eine Metrik für Wahrscheinlichkeitsmaße, die sich durch Wahrscheinlichkeitsdichten darstellen. Er steht im engen Zusammenhang mit dem Totalvariationsabstand und erlaubt beispielsweise, aufgrund des Abstandes zweier Wahrscheinlichkeitsmaße Rückschlüsse zu ziehen, ob diese singulär zueinander sind. Er wurde 1909 von Ernst Hellinger im Rahmen der Funktionalanalysis eingeführt. (de)
  • In probability and statistics, the Hellinger distance (closely related to, although different from, the Bhattacharyya distance) is used to quantify the similarity between two probability distributions. It is a type of f-divergence. The Hellinger distance is defined in terms of the Hellinger integral, which was introduced by Ernst Hellinger in 1909. It is sometimes called the Jeffreys distance. (en)
  • En Théorie des probabilités, pour toutes mesures de probabilités et absolument continues par rapport à une troisième mesure , le carré de la distance de Hellinger entre et est donné par : où et désignent respectivement les dérivées de Radon-Nykodym de et . Cette définition ne dépend pas de , si bien que la distance de Hellinger entre et ne change pas si est remplacée par une autre mesure de probabilité par rapport à laquelle et soient absolument continues. Pour alléger l'écriture, la formule précédente est couramment écrite : La distance de Hellinger ainsi définie vérifie : Remarque : Certains auteurs ne font pas figurer le facteur 1/2 précédant l'intégrale dans cette définition. (fr)
dbo:wikiPageID
  • 13035709 (xsd:integer)
dbo:wikiPageLength
  • 9858 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1119875158 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dct:subject
rdf:type
rdfs:comment
  • Der Hellingerabstand, auch Hellingermetrik genannt, ist eine Metrik für Wahrscheinlichkeitsmaße, die sich durch Wahrscheinlichkeitsdichten darstellen. Er steht im engen Zusammenhang mit dem Totalvariationsabstand und erlaubt beispielsweise, aufgrund des Abstandes zweier Wahrscheinlichkeitsmaße Rückschlüsse zu ziehen, ob diese singulär zueinander sind. Er wurde 1909 von Ernst Hellinger im Rahmen der Funktionalanalysis eingeführt. (de)
  • In probability and statistics, the Hellinger distance (closely related to, although different from, the Bhattacharyya distance) is used to quantify the similarity between two probability distributions. It is a type of f-divergence. The Hellinger distance is defined in terms of the Hellinger integral, which was introduced by Ernst Hellinger in 1909. It is sometimes called the Jeffreys distance. (en)
  • En Théorie des probabilités, pour toutes mesures de probabilités et absolument continues par rapport à une troisième mesure , le carré de la distance de Hellinger entre et est donné par : où et désignent respectivement les dérivées de Radon-Nykodym de et . Cette définition ne dépend pas de , si bien que la distance de Hellinger entre et ne change pas si est remplacée par une autre mesure de probabilité par rapport à laquelle et soient absolument continues. Pour alléger l'écriture, la formule précédente est couramment écrite : La distance de Hellinger ainsi définie vérifie : (fr)
rdfs:label
  • Hellingerabstand (de)
  • Distance de Hellinger (fr)
  • Hellinger distance (en)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:knownFor of
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is dbp:knownFor of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License