dbo:abstract
|
- In statistics, an F-test of equality of variances is a test for the null hypothesis that two normal populations have the same variance. Notionally, any F-test can be regarded as a comparison of two variances, but the specific case being discussed in this article is that of two populations, where the test statistic used is the ratio of two sample variances. This particular situation is of importance in mathematical statistics since it provides a basic exemplar case in which the F-distribution can be derived. For application in applied statistics, there is concern that the test is so sensitive to the assumption of normality that it would be inadvisable to use it as a routine test for the equality of variances. In other words, this is a case where "approximate normality" (which in similar contexts would often be justified using the central limit theorem), is not good enough to make the test procedure approximately valid to an acceptable degree. (en)
- En statistique, le test F d'égalité de deux variances, est un test d'hypothèse qui permet de tester l'hypothèse nulle que deux lois normales ont la même variance. Il fait partie du grand ensemble de tests appelé "test F". (fr)
|
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 5838 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
dbp:wikiPageUsesTemplate
| |
dcterms:subject
| |
gold:hypernym
| |
rdf:type
| |
rdfs:comment
|
- En statistique, le test F d'égalité de deux variances, est un test d'hypothèse qui permet de tester l'hypothèse nulle que deux lois normales ont la même variance. Il fait partie du grand ensemble de tests appelé "test F". (fr)
- In statistics, an F-test of equality of variances is a test for the null hypothesis that two normal populations have the same variance. Notionally, any F-test can be regarded as a comparison of two variances, but the specific case being discussed in this article is that of two populations, where the test statistic used is the ratio of two sample variances. This particular situation is of importance in mathematical statistics since it provides a basic exemplar case in which the F-distribution can be derived. For application in applied statistics, there is concern that the test is so sensitive to the assumption of normality that it would be inadvisable to use it as a routine test for the equality of variances. In other words, this is a case where "approximate normality" (which in similar con (en)
|
rdfs:label
|
- F-test of equality of variances (en)
- Test de Fisher d'égalité de deux variances (fr)
|
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageRedirects
of | |
is dbo:wikiPageWikiLink
of | |
is foaf:primaryTopic
of | |