In mathematics, especially operator theory, a convexoid operator is a bounded linear operator T on a complex Hilbert space H such that the closure of the numerical range coincides with the convex hull of its spectrum. An example of such an operator is a normal operator (or some of its generalization). A closely related operator is a spectraloid operator: an operator whose spectral radius coincides with its numerical radius. In fact, an operator T is convexoid if and only if is spectraloid for every complex number .
Property | Value |
---|---|
dbo:abstract |
|
dbo:wikiPageExternalLink | |
dbo:wikiPageID |
|
dbo:wikiPageLength |
|
dbo:wikiPageRevisionID |
|
dbo:wikiPageWikiLink | |
dbp:wikiPageUsesTemplate | |
dcterms:subject | |
rdfs:comment |
|
rdfs:label |
|
owl:sameAs | |
prov:wasDerivedFrom | |
foaf:isPrimaryTopicOf | |
is dbo:wikiPageWikiLink of | |
is foaf:primaryTopic of |