An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In mathematics, especially operator theory, a convexoid operator is a bounded linear operator T on a complex Hilbert space H such that the closure of the numerical range coincides with the convex hull of its spectrum. An example of such an operator is a normal operator (or some of its generalization). A closely related operator is a spectraloid operator: an operator whose spectral radius coincides with its numerical radius. In fact, an operator T is convexoid if and only if is spectraloid for every complex number .

Property Value
dbo:abstract
  • In mathematics, especially operator theory, a convexoid operator is a bounded linear operator T on a complex Hilbert space H such that the closure of the numerical range coincides with the convex hull of its spectrum. An example of such an operator is a normal operator (or some of its generalization). A closely related operator is a spectraloid operator: an operator whose spectral radius coincides with its numerical radius. In fact, an operator T is convexoid if and only if is spectraloid for every complex number . (en)
  • Inom matematiken är en konvexoidoperator en linjär operator T på ett komplext Hilbertrum H så att det slutna höljet av dess är lika med det konvexa höljet av dess spektrum. (sv)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 21498815 (xsd:integer)
dbo:wikiPageLength
  • 1132 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 905485397 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
rdfs:comment
  • In mathematics, especially operator theory, a convexoid operator is a bounded linear operator T on a complex Hilbert space H such that the closure of the numerical range coincides with the convex hull of its spectrum. An example of such an operator is a normal operator (or some of its generalization). A closely related operator is a spectraloid operator: an operator whose spectral radius coincides with its numerical radius. In fact, an operator T is convexoid if and only if is spectraloid for every complex number . (en)
  • Inom matematiken är en konvexoidoperator en linjär operator T på ett komplext Hilbertrum H så att det slutna höljet av dess är lika med det konvexa höljet av dess spektrum. (sv)
rdfs:label
  • Convexoid operator (en)
  • Konvexoidoperator (sv)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License