About: Group representation     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:Location100027167, within Data Space : dbpedia.org associated with source document(s)
QRcode icon
http://dbpedia.org/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FGroup_representation

In the mathematical field of representation theory, group representations describe abstract groups in terms of bijective linear transformations (i.e. automorphisms) of vector spaces; in particular, they can be used to represent group elements as invertible matrices so that the group operation can be represented by matrix multiplication. Representations of groups are important because they allow many group-theoretic problems to be reduced to problems in linear algebra, which is well understood. They are also important in physics because, for example, they describe how the symmetry group of a physical system affects the solutions of equations describing that system.

AttributesValues
rdf:type
rdfs:label
  • نظرية التمثيل
  • Representació de grup
  • Reprezentace (grupa)
  • Darstellungstheorie (Gruppentheorie)
  • Group representation
  • Grupa prezento
  • Représentation de groupe
  • 群の表現
  • Rappresentazione dei gruppi
  • 군의 표현
  • Reprezentacja grupy
  • Representação de grupo
  • Представление группы
  • Представлення групи
  • 群表示論
rdfs:comment
  • Reprezentace grupy G je (homo)morfismus , kde V je vektorový prostor a grupa invertibilních lineárních zobrazení s operací skládání. Za předpokladu volby báze prostoru lze reprezentaci chápat jako homomorfizmus G do prostoru matic. Pokud je homomorfizmus dán, je prostor označován jako reprezentace G. Ekvivalentně se říká, že je G-, neboli má na . Pokud je a je topologická grupa, je požadováno, aby indukované zobrazení (akce) bylo spojité.
  • En mathématiques, une représentation de groupe décrit un groupe en le faisant agir sur un espace vectoriel de manière linéaire. Autrement dit, on essaie de voir le groupe comme un groupe de matrices, d'où le terme représentation. On peut ainsi, à partir des propriétés relativement bien connues du groupe des automorphismes de l'espace vectoriel, arriver à déduire quelques propriétés du groupe. C'est l'un des concepts importants de la théorie des représentations.
  • 数学において、群の表現(ぐんのひょうげん、英: group representation)とは、抽象的な群 G の元 g に対して具体的な線形空間 V の正則な線形変換としての実現を与える準同型写像 π: G → GL(V) のことである。線型空間 V の基底を取ることにより、π(g) をより具体的な正則行列として表すことができる。
  • 군의 표현(表現, 영어: representation)은 군론에서, 군을 벡터 공간의 일반선형군의 부분군으로 나타내는 군 준동형이다. 이를 사용하여, 군론의 문제를 선형대수학적 기법으로 다룰 수 있다.
  • Reprezentacja grupy – każdy homomorfizm grupy w grupę przekształceń liniowych odwracalnych ustalonej przestrzeni liniowej nad zadanym ciałem.
  • Представле́ние гру́ппы (точнее, линейное представление группы) — гомоморфизм заданной группы в группу невырожденных линейных преобразований векторного пространства.
  • 在群論中,群表示論(group representation theory)是一个非常重要的理論。它包含了(局部)緊緻群、李群、李代數及群概形的表示等種種分支,近來無限維表示理論也漸露頭角。表示理論在量子物理與數學的各領域中均有重要應用。
  • Представлення (зображення) груп описує абстрактні групи за допомогою лінійних перетворень векторних просторів, зокрема за допомогою матриць. Відповідно групові операції подаються за допомогою добутку лінійних перетворень чи добутку матриць За допомогою представлень проблеми теорії груп зводяться до простіших проблем з лінійної алгебри. Представлення груп є одним із найважливіших знарядь у дослідженні теорії груп і мають широке застосування у геометрії, фізиці, хімії і кристалографії. Розділ математики, що вивчає представлення груп, називається теорією представлень груп.
  • نظرية التمثيل (بالإنجليزية: Representation theory) هي فرع من الرياضيات تدرس البنية الجبرية المجردة عن طريق تمثيل العناصر الخاصة بهم (linear transformation) لـمتجه المسافة (vector space)، وتدرس الوحدات النمطية على هذه البنيات الجبرية المجردة. في الأساس، يعمل التمثيل على جعل الهدف الجبري المجرد أكثر واقعية من خلال وصف عناصره عن طريق المصفوفات (matrices) والعمليات الجبرية (algebraic operation) من حيث إضافة المصفوفة (matrix addition) وضرب مصفوفة في مصفوفة (matrix multiplication). تشمل الأهداف الجبرية المسؤولة عن مثل هذ الوصف المجموعات، الجبر التجميعي (associative algebra) وجبر لي (Lie algebra). أبرز هؤلاء (والأولى تاريخيًا) هي نظرية تمثيل المجموعات (representation theory of groups)، التي تتمثل فيها عناصر المجموعة عن طريق المصفوفة غير المفردة بطريقةٍ تُضرَب فيها المصفوفة في المصفوفة في عملية ا
  • En el camp matemàtic de la , les representacions de grups descriuen grups abstractes en termes de transformacions lineals d'espais vectorials; en particular, es poden utilitzar per representar els elements del grup com a matrius, de tal manera que l'operació del grup es pot representar mitjançant la multiplicació de matrius. Les representacions de grups són importants perquè permeten reduir a termes de l'àlgebra lineal molts problemes de teoria de grups, la qual cosa fa que siguin abordables d'una manera més senzilla. També són importants en física perquè, per exemple, descriuen com afecta el grup de simetria d'un sistema físic a les solucions de les equacions que descriuen el sistema.
  • Die hier beschriebene Darstellungstheorie ist ein Teilgebiet der Mathematik, das auf der Gruppentheorie aufbaut und ein Spezialfall der eigentlichen Darstellungstheorie ist, die sich mit Darstellungen von Algebren beschäftigt. Die Grundidee ist, die Elemente einer Gruppe durch Transformationen bestimmter mathematischer Objekte darzustellen. Eine Darstellung einer Gruppe , auch Gruppendarstellung, ist ein Homomorphismus von in die Automorphismengruppe einer gegebenen Struktur . Die Gruppenverknüpfung in entspricht dem Hintereinanderausführen von Automorphismen in :
  • In the mathematical field of representation theory, group representations describe abstract groups in terms of bijective linear transformations (i.e. automorphisms) of vector spaces; in particular, they can be used to represent group elements as invertible matrices so that the group operation can be represented by matrix multiplication. Representations of groups are important because they allow many group-theoretic problems to be reduced to problems in linear algebra, which is well understood. They are also important in physics because, for example, they describe how the symmetry group of a physical system affects the solutions of equations describing that system.
  • Grupa prezenta teorio estas la branĉo de matematiko, kiu studaj propraĵoj de abstraktaj grupoj tra iliaj prezentoj kiel linearaj transformoj de vektoraj spacoj. Prezenta teorio estas grava ĉar ĝi kapabligas multajn grupo-teoriajn problemojn reduktiĝi al problemoj en lineara algebro, kiu estas bonege-komprenita teorio. Ĝi estas ankaŭ grava en fiziko ĉar, ekzemple, ĝi estas uzata por priskribi kiel la simetria grupo de fizika sistemo afektas la solvoj al tiu sistemo.
  • La teoria delle rappresentazioni dei gruppi è il settore della matematica che studia le proprietà dei gruppi attraverso le loro rappresentazioni come trasformazioni lineari di spazi vettoriali. La teoria delle rappresentazioni riveste grande importanza, in quanto consente di ridurre molti problemi di teoria dei gruppi a problemi di algebra lineare, area della matematica per la quale sono ben conosciuti risultati generali e sono disponibili algoritmi dotati di efficienti implementazioni. La teoria delle rappresentazioni dei gruppi è molto importante anche in fisica, in particolare perché viene usata per descrivere come il gruppo di simmetria di un sistema fisico influenza le soluzioni delle equazioni che reggono il sistema stesso.
  • No campo matemático da teoria da representação, representações de grupos descrevem grupos abstratos em termos de transformações lineares de espaços vetoriais; em particular, eles podem ser usados para representar elementos de grupo como matrizes assim como a operação do grupo pode ser representada por multiplicação de matrizes. Representações de grupos são importantes porque elas permitem que muitos problemas teóricos de grupos serem reduzidos a problemas em álgebra linear, a qual é bem compreendida. Elas são importantes em física porque, por exemplo, elas descrevem como o grupo de simetria de um sistema físico afeta as soluções de equações descrevendo este sistema.
differentFrom
foaf:isPrimaryTopicOf
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Faceted Search & Find service v1.17_git51 as of Sep 16 2020


Alternative Linked Data Documents: PivotViewer | iSPARQL | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3321 as of Jun 2 2021, on Linux (x86_64-generic-linux-glibc25), Single-Server Edition (61 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2021 OpenLink Software