About: Gradient theorem     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:Thinking105770926, within Data Space : dbpedia.org associated with source document(s)
QRcode icon
http://dbpedia.org/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FGradient_theorem

The gradient theorem, also known as the fundamental theorem of calculus for line integrals, says that a line integral through a gradient field can be evaluated by evaluating the original scalar field at the endpoints of the curve. The theorem is a generalization of the second fundamental theorem of calculus to any curve in a plane or space (generally n-dimensional) rather than just the real line. For φ : U ⊆ Rn → R as a differentiable function and γ as any continuous curve in U which starts at a point p and ends at a point q, then where ∇φ denotes the gradient vector field of φ.

AttributesValues
rdf:type
rdfs:label
  • مبرهنة التدرج (ar)
  • Gradienta teoremo (eo)
  • Teorema del gradiente (es)
  • Théorème du gradient (fr)
  • Gradient theorem (en)
  • Teorema del gradiente (it)
  • 선적분의 기본정리 (ko)
  • Teorema do Gradiente (pt)
  • Градієнтна теорема (uk)
  • 梯度定理 (zh)
rdfs:comment
  • Le théorème du gradient est un théorème de l'analyse vectorielle qui met en relation l'intégrale de volume du gradient d'un champ scalaire et l'intégrale de surface du même champ. Le théorème est le suivant : Théorème du gradient — où S est le bord de V et f un champ scalaire. (fr)
  • 선적분의 기본정리는 다음과 같다. 집합 의 열린집합 에서 정의된 벡터장 가 인 일급함수 가 존재하면 일급곡선 를 따르는 선적분은 로 주어진다. (증명) (ko)
  • 梯度定理(英語:gradient theorem),也叫线积分基本定理,是说标量场梯度沿曲线的积分可用标量场在该曲线两端的值之差来计算。 设函数,则 梯度定理把微积分基本定理从直线数轴推广到平面、空间,乃至一般的维空间中的曲线。 梯度定理表明梯度场的曲线积分是路径无关的,这是物理学中“保守力”的定义方式之一。如果是位势,则就是保守向量场。上面的公式表明:保守力做功只和物体运动路径的端点有关,而与路径本身无关。 梯度定理有个逆定理,是说任何路径无关的向量场都可以表示为某个标量场的梯度。这个逆定理和原定理一样在纯粹和应用数学中有很多推论和应用。 (zh)
  • تنص مبرهنة التدرج (بالإنجليزية: Gradient theorem)‏، والمعروفة أيضًا باسم المبرهنة الأساسية للتفاضل والتكامل للتكاملات الخطية، أنه يمكن تقييم تكامل خطي من خلال حقل التدرج من خلال تقييم الحقل السلمي الأصلي في نقاط النهاية للمنحنى. المبرهنة هي تعميم المبرهنة الأساسية للتفاضل والتكامل لأي منحنى في مستوى أو فضاء (بشكل عام n الأبعاد) بدلاً من مجرد الخط الحقيقي. لتكن φ : U ⊆ ℝn → ℝ دالة قابلة للاشتقاق باستمرار و γ أي منحنى في U يبدأ عند p وينتهي عند q. تنص المبرهنة على أن: (حيث تشير ∇φ إلى تدرج الحقل المتجهي لـ φ) (ar)
  • En matematiko, la gradienta teoremo aŭ la fundamenta teoremo de kalkulo por kurbaj integraloj statas ke kurba integralo tra gradiento de iu skalara kampo egalas al diferenco inter valoroj de la originala skalara kampo je la finaj punktoj de la kurbo: Ĉiu povas esti esprimita kiel gradiento de iu skalara kampo, kaj tiel al ĝi la teoremo povas esti aplikita. Ĝi estas ĝeneraligo de la fundamenta teoremo de kalkulo al ĉiu kurbo anstataŭ de nur parto de la reela linio. La gradienta teoremo implicas ke kurba integralo tra senkirla vektora kampo estas sendependa de la vojo de la integralado. (eo)
  • El teorema de gradiente, también conocido como el teorema fundamental de cálculo para integrales de línea, dice que una integral de línea de un campo de gradiente puede ser evaluada simplemente evaluando el campo escalar original en los puntos extremos de la curva. El teorema es una generalización del teorema fundamental de cálculo para cualquier curva en el plano o en el espacio (generalmente -dimensional) más que sólo en la recta real. Sea con una función continuamente diferenciable y cualquier curva en que empieza en y termina en entonces (es)
  • The gradient theorem, also known as the fundamental theorem of calculus for line integrals, says that a line integral through a gradient field can be evaluated by evaluating the original scalar field at the endpoints of the curve. The theorem is a generalization of the second fundamental theorem of calculus to any curve in a plane or space (generally n-dimensional) rather than just the real line. For φ : U ⊆ Rn → R as a differentiable function and γ as any continuous curve in U which starts at a point p and ends at a point q, then where ∇φ denotes the gradient vector field of φ. (en)
  • In matematica e fisica, il teorema del gradiente, noto anche come teorema fondamentale del calcolo per integrali di linea, afferma che l'integrale di linea di un campo vettoriale conservativo (che può, cioè, essere espresso come il gradiente di un campo scalare) è calcolabile valutando il campo scalare considerato (noto a meno di una costante) agli estremi della curva su cui è svolta l'integrazione. Si tratta di un caso speciale del più generale teorema di Stokes. (it)
  • O teorema do gradiente, também conhecido como teorema fundamental do cálculo, para integrais de linha, diz que a integral de linha através do campo gradiente pode ser estimada calculando-se o campo escalar original nos pontos finais da curva. Dado φ : U ⊆ ℝn → ℝ e γ é qualquer curva de p para q. Então, Isso é uma generalização do teorema fundamental do cálculo para qualquer curva no plano ou no espaço (geralmente n-dimensões). (pt)
  • Градієнтна теорема, або фундаментальна теорема числення для криволінійних інтегралів, стверджує, що криволінійний інтеграл над градієнтним полем можна розрахувати через розрахунок початкового скалярного поля в кінцевих точках кривої. Нехай і є довільною кривою від точки p до q. Тоді Це є узагальненням фундаментальної теореми числення для будь-якої кривої на площині або у просторі (у загальному n-вимірному випадку), а не лише для дійсних кривих. (uk)
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
sameAs
Faceted Search & Find service v1.17_git139 as of Feb 29 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3330 as of Mar 19 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (61 GB total memory, 49 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software