About: Stokes' theorem     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:Message106598915, within Data Space : dbpedia.org associated with source document(s)
QRcode icon
http://dbpedia.org/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FStokes%27_theorem

In vector calculus, and more generally differential geometry, Stokes' theorem (sometimes spelled Stokes's theorem, and also called the generalized Stokes theorem or the Stokes–Cartan theorem) is a statement about the integration of differential forms on manifolds, which both simplifies and generalizes several theorems from vector calculus. Stokes' theorem says that the integral of a differential form ω over the boundary of some orientable manifold Ω is equal to the integral of its exterior derivative dω over the whole of Ω, i.e., Mathematical Interpretation

AttributesValues
rdf:type
rdfs:label
  • مبرهنة ستوكس
  • Teorema de Stokes
  • Stokesova věta
  • Satz von Stokes
  • Teoremo de Stokes
  • Teorema de Stokes
  • Théorème de Stokes
  • Stokes' theorem
  • ストークスの定理
  • Teorema di Stokes
  • 스토크스의 정리
  • Stelling van Stokes
  • Twierdzenie Stokesa
  • Teorema de Stokes
  • Теорема Стокса
  • Теорема Стокса
  • Stokes sats
  • 斯托克斯定理
rdfs:comment
  • في علم التفاضل الشعاعي وعلم الهندسة التفاضلية، تعرف مبرهنة ستوكس (بالانجليزية: Stokes' theorem) او (generalized Stokes theorem) بأنها ) هي جملة من generalizes several من المتجهات التفاضلية التي تتكامل مع مشتق خارجي من اوميقا ω is a statement about the مبرهنة from تفاضل شعاعي. Stokes' theorem says that the integral of a differential form over the boundary of some orientable manifold Ω is equal to the integral of its exterior derivative dω over the whole of Ω, i.e.,
  • Stokesova věta, je věta matematické analýzy, která dává do souvislosti křivkový integrál vektorového pole přes uzavřenou křivku a plošný integrál z rotace daného vektorového pole přes plochu křivkou uzavřenou. Tato věta je speciálním případem tzv. Zobecněné Stokesovy věty. Ekvivalentem Stokesovy věty v rovině je tzv. Greenova věta.
  • En geometría diferencial, el teorema de Stokes, también llamado teorema de Stokes-Thomson, es una proposición sobre la integración de formas diferenciales que generaliza varios teoremas del cálculo vectorial en variedades diferenciables. Se nombra así por George Gabriel Stokes (1819-1903), a pesar de que la primera formulación conocida del teorema fue realizada por William Thomson y aparece en una correspondencia que él mantuvo con Stokes fechada el 2 de julio de 1850.​​​ Stokes puso el teorema como una pregunta en el examen de 1854 del , lo que dio como resultado que ahora lleve su nombre.​​
  • ストークスの定理(ストークスのていり、英: Stokes' theorem)は、ベクトル解析の定理のひとつである。3次元ベクトル場の回転を閉曲線を境界とする曲面上で面積分したものが、元のベクトル場を曲面の境界である閉曲線上で線積分したものと一致することを述べる。定理の名はイギリスの物理学者ジョージ・ガブリエル・ストークスに因む。ベクトル解析におけるグリーン・ガウス・ストークスの定理を、より一般的な向きづけられた多様体上に拡張したものも、同様にストークスの定理と呼ばれる。微分積分学の基本定理の、多様体への拡張であるともいえる。
  • In matematica, in particolare in geometria differenziale, il teorema di Stokes è un enunciato riguardante l'integrazione delle forme differenziali che generalizza diversi teoremi di calcolo vettoriale, quali il teorema della divergenza o il teorema del rotore. Prende il nome da Sir George Gabriel Stokes (1819-1903), nonostante la prima formulazione del teorema sia stata attribuita a William Thomson (Lord Kelvin), che la inviò in una lettera a Stokes nel luglio del 1850.
  • De stelling van Stokes is een wiskundige stelling die zegt dat de kringintegraal van het scalair product van een vectorveld met een infinitesimale verandering van de plaatsvector gelijk is aan de oppervlakteintegraal van de normaalcomponenten van de rotatie van . De stelling werd ontwikkeld door George Stokes, een 19e-eeuwse wiskundige aan de Universiteit van Cambridge. De stelling heeft belangrijke toepassingen in de vloeistofdynamica en in het elektromagnetisme (zie de wetten van Maxwell).
  • 미분기하학에서 스토크스의 정리(영어: Stokes’ theorem)는 매끄러운 다양체 위의 미분 형식의 적분에 관한 정리다. 이에 따라, 미분 형식의 외미분을 다양체에 적분한 값은, 그 미분 형식을 다양체의 경계에 대하여 적분한 값과 같다. 벡터 미적분학의 몇몇 정리를 일반화한 것이다.
  • Twierdzenie Stokesa – twierdzenie mówiące, że cyrkulacja pola wektorowego po zamkniętym i zorientowanym konturze gładkim jest równa strumieniowi rotacji pola przez dowolną powierzchnię ograniczoną tym konturem. Twierdzenie to odgrywa ważną rolę w teorii pól. Używane jest w mechanice płynów, równaniach Maxwella i wielu innych. Twierdzenia Greena i Ostrogradskiego-Gaussa można traktować jako szczególne przypadki twierdzenia Stokesa.
  • O Teorema de Stokes, na geometria diferencial, é uma afirmação sobre a integração de formas diferenciais que generaliza diversos teoremas do cálculo vetorial. Além disso, possui aplicações importantes no estudo dos campos vetoriais, especialmente na análise do movimento de rotação dos fluidos. É assim chamado em homenagem ao matemático George Gabriel Stokes (1819-1903), embora a primeira referência conhecida do resultado seja por William Thomson (Lord Kelvin) e apareça em uma carta dele para Stokes, datada de 2 de julho de 1850. Quando a superfície é plana, o Teorema de Stokes cai em uma forma particular conhecido como Teorema de Green.
  • Теорема Стокса — одна из основных теорем дифференциальной геометрии и математического анализа об интегрировании дифференциальных форм, которая обобщает несколько теорем анализа. Названа в честь Дж. Г. Стокса.
  • Теорема Стокса — одна із основних теорем диференціальної геометрії і математичного аналізу. Названа іменем ірландського фізика Джорджа Габріеля Стокса. У термінах диференціальних форм теорема записується формулою тобто інтеграл від зовнішнього диференціалу форми по області дорівнює інтегралу від цієї форми по границі області. У одновимірному випадку твердження збігається з формулою Ньютона—Лейбніца. Випадок інтегрування по двомірній області називається формулою Гріна, по тривимірній області — формулою Остроградського.
  • 斯托克斯定理(英文:Stokes' theorem)是微分几何中关于微分形式的积分的定理,因為維數跟空間的不同而有不同的表現形式,它的一般形式包含了向量分析的几个定理,以斯托克斯爵士命名。
  • El teorema de Stokes en geometria diferencial és una declaració sobre la integració de formes diferencials que generalitza en diversos teoremes del càlcul vectorial. Deu el seu nom a Sir George Gabriel Stokes (1819-1903). El teorema va agafar el seu nom per l'hàbit de Stokes en incloure'l als exàmens de Cambridge, tot i que sembla que la primera demostració escrita i publicada del teorema es deu a Hermann Hankel (1861). El teorema es fa servir sovint en situacions on M és una subvarietat orientada submergida en una varietat més gran en la qual es defineix la forma .
  • Der Satz von Stokes oder stokessche Integralsatz ist ein nach Sir George Gabriel Stokes benannter Satz aus der Differentialgeometrie. In der allgemeinen Fassung handelt es sich um einen sehr grundlegenden Satz über die Integration von Differentialformen, der den Hauptsatz der Differential- und Integralrechnung erweitert und eine Verbindungslinie von der Differentialgeometrie zur Algebraischen Topologie eröffnet. Dieser Zusammenhang wird durch den Satz von de Rham beschrieben, für den der Satz von Stokes grundlegend ist.
  • In vector calculus, and more generally differential geometry, Stokes' theorem (sometimes spelled Stokes's theorem, and also called the generalized Stokes theorem or the Stokes–Cartan theorem) is a statement about the integration of differential forms on manifolds, which both simplifies and generalizes several theorems from vector calculus. Stokes' theorem says that the integral of a differential form ω over the boundary of some orientable manifold Ω is equal to the integral of its exterior derivative dω over the whole of Ω, i.e., Mathematical Interpretation
  • En diferenciala geometrio, la teoremo de Stokes estas esprimo pri la integralado de diferenciala formo, kiu ĝeneraligas kelkajn teoremojn de vektora kalkulo. Tiu termino originas de la nomo de Kavaliro George Gabriel Stokes (1819-1903), kvankam la unua sciata propozicio de la teoremo estis de William Thomson (Lord Kelvin) kaj aperis en letero de lia al Stokes. La teoremo akiris nomon de Stokes pro tio ke li inkluzivis ĝin en la premiaj ekzamenoj de Kembriĝo en 1854: li demandis la studentojn pruvi la teoremon dum ekzameno, ne estas sciate ĉu iu kapablis ĉi tion fari. Ankaŭ la diverĝenca teoremo
  • En mathématiques, et plus particulièrement en géométrie différentielle, le théorème de Stokes (parfois appelé théorème de Stokes-Cartan) est un résultat central sur l'intégration des formes différentielles, qui généralise le second théorème fondamental de l'analyse, ainsi que de nombreux théorèmes d'analyse vectorielle. Il possède de multiples applications, fournissant ainsi un formulaire qu'utilisent volontiers physiciens et ingénieurs, particulièrement en mécanique des fluides.
  • Stokes sats, efter George Gabriel Stokes, innebär att för varje kontinuerligt deriverbar funktion F gäller, då C=∂S är en sluten kurva i rummet, att 1. * eller 2. * 3. * Dessa formler kan generaliseras med tensornotation. där betecknar Levi-Civita-tensorn. Inom differentialgeometrin används en formalism som tillåter dessa likheter att skrivas som ett enda uttryck, ibland kallat generaliserade Stokes sats:
foaf:depiction
  • External Image
foaf:isPrimaryTopicOf
thumbnail
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Faceted Search & Find service v1.17_git51 as of Sep 16 2020


Alternative Linked Data Documents: PivotViewer | iSPARQL | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3319 as of Dec 29 2020, on Linux (x86_64-centos_6-linux-glibc2.12), Single-Server Edition (61 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2021 OpenLink Software