About: Cartan's equivalence method     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Thing, within Data Space : dbpedia.org associated with source document(s)
QRcode icon
http://dbpedia.org/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FCartan%27s_equivalence_method

In mathematics, Cartan's equivalence method is a technique in differential geometry for determining whether two geometrical structures are the same up to a diffeomorphism. For example, if M and N are two Riemannian manifolds with metrics g and h, respectively, when is there a diffeomorphism such that ? The equivalence method is an essentially algorithmic procedure for determining when two geometric structures are identical. For Cartan, the primary geometrical information was expressed in a coframe or collection of coframes on a differentiable manifold. See method of moving frames.

AttributesValues
rdfs:label
  • Cartan's equivalence method (en)
rdfs:comment
  • In mathematics, Cartan's equivalence method is a technique in differential geometry for determining whether two geometrical structures are the same up to a diffeomorphism. For example, if M and N are two Riemannian manifolds with metrics g and h, respectively, when is there a diffeomorphism such that ? The equivalence method is an essentially algorithmic procedure for determining when two geometric structures are identical. For Cartan, the primary geometrical information was expressed in a coframe or collection of coframes on a differentiable manifold. See method of moving frames. (en)
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
sameAs
dbp:wikiPageUsesTemplate
has abstract
  • In mathematics, Cartan's equivalence method is a technique in differential geometry for determining whether two geometrical structures are the same up to a diffeomorphism. For example, if M and N are two Riemannian manifolds with metrics g and h, respectively, when is there a diffeomorphism such that ? Although the answer to this particular question was known in dimension 2 to Gauss and in higher dimensions to Christoffel and perhaps Riemann as well, Élie Cartan and his intellectual heirs developed a technique for answering similar questions for radically different geometric structures. (For example see the Cartan–Karlhede algorithm.) Cartan successfully applied his equivalence method to many such structures, including , CR structures, and complex structures, as well as ostensibly non-geometrical structures such as the equivalence of Lagrangians and ordinary differential equations. (His techniques were later developed more fully by many others, such as D. C. Spencer and Shiing-Shen Chern.) The equivalence method is an essentially algorithmic procedure for determining when two geometric structures are identical. For Cartan, the primary geometrical information was expressed in a coframe or collection of coframes on a differentiable manifold. See method of moving frames. (en)
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is Wikipage redirect of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git139 as of Feb 29 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3332 as of Dec 5 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (62 GB total memory, 35 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software