This HTML5 document contains 119 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
dbpedia-eshttp://es.dbpedia.org/resource/
n17https://global.dbpedia.org/id/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
dbpedia-pthttp://pt.dbpedia.org/resource/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
n18http://bs.dbpedia.org/resource/
dbpedia-frhttp://fr.dbpedia.org/resource/
wikipedia-enhttp://en.wikipedia.org/wiki/
dbphttp://dbpedia.org/property/
dbchttp://dbpedia.org/resource/Category:
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
goldhttp://purl.org/linguistics/gold/
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Molecular_Hamiltonian
rdf:type
owl:Thing dbo:Company
rdfs:label
Hamiltonien moléculaire Hamiltoniano molecular Hamiltoniano molecular Molecular Hamiltonian
rdfs:comment
En optique et en chimie quantique, « l'hamiltonien moléculaire » est l'opérateur hamiltonien de l'énergie des électrons et des noyaux d'une molécule. Cet opérateur hermitien et l'équation de Schrödinger associée sont à la base du calcul des propriétés des molécules et des agrégats de molécules, comme la conductivité, les propriétés optiques et magnétique, ou encore la réactivité. In atomic, molecular, and optical physics and quantum chemistry, the molecular Hamiltonian is the Hamiltonian operator representing the energy of the electrons and nuclei in a molecule. This operator and the associated Schrödinger equation play a central role in computational chemistry and physics for computing properties of molecules and aggregates of molecules, such as thermal conductivity, specific heat, electrical conductivity, optical, and magnetic properties, and reactivity. Na física atômica, molecular e óptica e na química quântica, o hamiltoniano molecular é o operador hamiltoniano que representa a energia dos elétrons e núcleos de uma molécula. Esse operador e a equação de Schrödinger associada desempenham um papel central na química e na física computacional para calcular propriedades de moléculas e agregados de moléculas, como condutividade térmica, calor específico, condutividade elétrica, propriedades ópticas e magnéticas e reatividade. En física atómica, molecular y óptica, así como en química cuántica, hamiltoniano molecular es el nombre dado al operador hamiltoniano que representa la energía del sistema constituido por los electrones y el conjunto de núcleos de una molécula. Este es una operador autoadjunto, es decir hermítico, cuya ecuación de Schrödinger asociada juega un papel central en la química computacional y en la física computacional para calcular propiedades de moléculas y agregados de las mismas, tales como conductividad térmica, calor específico, conductividad eléctrica, propiedades ópticas y magnéticas, y reactividad.
dcterms:subject
dbc:Quantum_chemistry dbc:Molecular_physics dbc:Spectroscopy
dbo:wikiPageID
7148738
dbo:wikiPageRevisionID
1089106685
dbo:wikiPageWikiLink
dbr:Function_(mathematics) dbr:Nuclear_quadrupole_coupling dbr:Canonical_quantization dbr:Lorentz_covariant dbr:Spin-other-orbit_coupling dbr:Euler_angles dbr:Self-adjoint dbr:Computational_physics dbr:Optics dbr:Quadrupole dbr:Adiabatic_process_(quantum_mechanics) dbr:Eckart_conditions dbr:Atomic,_molecular,_and_optical_physics dbr:Vibration dbr:Least_squares dbr:Rigid_rotor dbr:Elementary_charge dbr:GF_method dbr:Molecule dbr:Thermal_conductivity dbr:Laplace_operator dbr:Del dbr:Laplace–Beltrami_operator dbr:Quantum_chemistry_computer_programs dbr:Eigenvalue dbr:Center_of_mass dbr:Reactivity_(chemistry) dbr:Enantiomers dbr:Centrifugal_force dbr:Hamiltonian_(quantum_mechanics) dbr:Atomic_nucleus dbr:Heisenberg_uncertainty_principle dbr:Atomic_number dbc:Quantum_chemistry dbr:Electric_potential dbc:Molecular_physics dbr:Curvilinear_coordinates dbr:Standard_Model dbr:Hessian_matrix dbr:Dover_Publications dbr:Chiral_molecules dbr:Schrödinger_equation dbr:Translation dbr:Quantum_chemistry dbr:Franck–Condon_principle dbr:Translation_(physics) dbr:Coulomb's_law dbr:Inertial_frame dbr:Chapman_and_Hall dbr:Semi-rigid_molecule dbr:Harmonic_approximation dbr:Levi-Civita_symbol dbr:Fermi-contact_term dbr:Frame_of_reference dbr:Energy dbr:Point_charge dbr:Kinetic_energy dbr:Electrical_conductivity dbr:Spin_(physics) dbr:Atomic_numbers dbr:Born–Oppenheimer_approximation dbr:Wigner_D-matrix dbr:Atomic_orbitals dbr:Spin–orbit_interaction dbr:Electron dbr:Computational_chemistry dbr:Rotation dbr:Fictitious_force dbc:Spectroscopy dbr:Harmonic_oscillator dbr:Magnetism dbr:Distance dbr:Quadratic_function dbr:Specific_heat dbr:Non-inertial_frame dbr:Chain_rule dbr:Coriolis_effect dbr:Paul_Dirac dbr:Potential_energy_surface dbr:Magnetic_dipole–dipole_interaction
owl:sameAs
freebase:m.0h6tym wikidata:Q2379331 dbpedia-pt:Hamiltoniano_molecular dbpedia-fr:Hamiltonien_moléculaire n17:2EswL n18:Molekulski_hamiltonijan dbpedia-es:Hamiltoniano_molecular
dbp:wikiPageUsesTemplate
dbt:Math dbt:Use_dmy_dates dbt:Cite_book dbt:Authority_control dbt:Cite_journal dbt:Reflist dbt:Quantum_mechanics dbt:Short_description dbt:Clarify
dbo:abstract
En optique et en chimie quantique, « l'hamiltonien moléculaire » est l'opérateur hamiltonien de l'énergie des électrons et des noyaux d'une molécule. Cet opérateur hermitien et l'équation de Schrödinger associée sont à la base du calcul des propriétés des molécules et des agrégats de molécules, comme la conductivité, les propriétés optiques et magnétique, ou encore la réactivité. In atomic, molecular, and optical physics and quantum chemistry, the molecular Hamiltonian is the Hamiltonian operator representing the energy of the electrons and nuclei in a molecule. This operator and the associated Schrödinger equation play a central role in computational chemistry and physics for computing properties of molecules and aggregates of molecules, such as thermal conductivity, specific heat, electrical conductivity, optical, and magnetic properties, and reactivity. The elementary parts of a molecule are the nuclei, characterized by their atomic numbers, Z, and the electrons, which have negative elementary charge, −e. Their interaction gives a nuclear charge of Z + q, where q = −eN, with N equal to the number of electrons. Electrons and nuclei are, to a very good approximation, point charges and point masses. The molecular Hamiltonian is a sum of several terms: its major terms are the kinetic energies of the electrons and the Coulomb (electrostatic) interactions between the two kinds of charged particles. The Hamiltonian that contains only the kinetic energies of electrons and nuclei, and the Coulomb interactions between them, is known as the Coulomb Hamiltonian. From it are missing a number of small terms, most of which are due to electronic and nuclear spin. Although it is generally assumed that the solution of the time-independent Schrödinger equation associated with the Coulomb Hamiltonian will predict most properties of the molecule, including its shape (three-dimensional structure), calculations based on the full Coulomb Hamiltonian are very rare. The main reason is that its Schrödinger equation is very difficult to solve. Applications are restricted to small systems like the hydrogen molecule. Almost all calculations of molecular wavefunctions are based on the separation of the Coulomb Hamiltonian first devised by Born and Oppenheimer. The nuclear kinetic energy terms are omitted from the Coulomb Hamiltonian and one considers the remaining Hamiltonian as a Hamiltonian of electrons only. The stationary nuclei enter the problem only as generators of an electric potential in which the electrons move in a quantum mechanical way. Within this framework the molecular Hamiltonian has been simplified to the so-called clamped nucleus Hamiltonian, also called electronic Hamiltonian, that acts only on functions of the electronic coordinates. Once the Schrödinger equation of the clamped nucleus Hamiltonian has been solved for a sufficient number of constellations of the nuclei, an appropriate eigenvalue (usually the lowest) can be seen as a function of the nuclear coordinates, which leads to a potential energy surface. In practical calculations the surface is usually fitted in terms of some analytic functions. In the second step of the Born–Oppenheimer approximation the part of the full Coulomb Hamiltonian that depends on the electrons is replaced by the potential energy surface. This converts the total molecular Hamiltonian into another Hamiltonian that acts only on the nuclear coordinates. In the case of a breakdown of the Born–Oppenheimer approximation—which occurs when energies of different electronic states are close—the neighboring potential energy surfaces are needed, see this article for more details on this. The nuclear motion Schrödinger equation can be solved in a space-fixed (laboratory) frame, but then the translational and rotational (external) energies are not accounted for. Only the (internal) atomic vibrations enter the problem. Further, for molecules larger than triatomic ones, it is quite common to introduce the , which approximates the potential energy surface as a quadratic function of the atomic displacements. This gives the harmonic nuclear motion Hamiltonian. Making the harmonic approximation, we can convert the Hamiltonian into a sum of uncoupled one-dimensional harmonic oscillator Hamiltonians. The one-dimensional harmonic oscillator is one of the few systems that allows an exact solution of the Schrödinger equation. Alternatively, the nuclear motion (rovibrational) Schrödinger equation can be solved in a special frame (an Eckart frame) that rotates and translates with the molecule. Formulated with respect to this body-fixed frame the Hamiltonian accounts for rotation, translation and vibration of the nuclei. Since Watson introduced in 1968 an important simplification to this Hamiltonian, it is often referred to as Watson's nuclear motion Hamiltonian, but it is also known as the Eckart Hamiltonian. Na física atômica, molecular e óptica e na química quântica, o hamiltoniano molecular é o operador hamiltoniano que representa a energia dos elétrons e núcleos de uma molécula. Esse operador e a equação de Schrödinger associada desempenham um papel central na química e na física computacional para calcular propriedades de moléculas e agregados de moléculas, como condutividade térmica, calor específico, condutividade elétrica, propriedades ópticas e magnéticas e reatividade. O Hamiltoniano molecular é uma soma de vários termos: seus principais termos são as energias cinéticas dos elétrons e as interações Coulomb (eletrostática) entre os dois tipos de partículas carregadas. O Hamiltoniano que contém apenas as energias cinéticas dos elétrons e núcleos, e as interações de Coulomb entre eles, é conhecido como Hamiltoniano de Coulomb. Nele faltam alguns termos pequenos, a maioria dos quais são devidos a spin eletrônico e nuclear. En física atómica, molecular y óptica, así como en química cuántica, hamiltoniano molecular es el nombre dado al operador hamiltoniano que representa la energía del sistema constituido por los electrones y el conjunto de núcleos de una molécula. Este es una operador autoadjunto, es decir hermítico, cuya ecuación de Schrödinger asociada juega un papel central en la química computacional y en la física computacional para calcular propiedades de moléculas y agregados de las mismas, tales como conductividad térmica, calor específico, conductividad eléctrica, propiedades ópticas y magnéticas, y reactividad.
gold:hypernym
dbr:Operator
prov:wasDerivedFrom
wikipedia-en:Molecular_Hamiltonian?oldid=1089106685&ns=0
dbo:wikiPageLength
38364
foaf:isPrimaryTopicOf
wikipedia-en:Molecular_Hamiltonian