This HTML5 document contains 370 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dbthttp://dbpedia.org/resource/Template:
dbpedia-dahttp://da.dbpedia.org/resource/
n18http://citeseer.ist.psu.edu/
dbpedia-svhttp://sv.dbpedia.org/resource/
wikipedia-enhttp://en.wikipedia.org/wiki/
n8https://lup.lub.lu.se/record/
dbrhttp://dbpedia.org/resource/
dbpedia-arhttp://ar.dbpedia.org/resource/
n25http://commons.wikimedia.org/wiki/Special:FilePath/
dctermshttp://purl.org/dc/terms/
rdfshttp://www.w3.org/2000/01/rdf-schema#
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
n47http://d-nb.info/gnd/
n16https://web.archive.org/web/20160303183533/http:/www.quantware.ups-tlse.fr/IHP2006/
n14http://dbpedia.org/resource/File:
dbphttp://dbpedia.org/property/
dbpedia-euhttp://eu.dbpedia.org/resource/
dbpedia-gahttp://ga.dbpedia.org/resource/
n17http://ur.dbpedia.org/resource/
n20http://citeseer.ist.psu.edu/article/
xsdhhttp://www.w3.org/2001/XMLSchema#
n19http://www.quiprocone.org/Protected/
dbohttp://dbpedia.org/ontology/
dbpedia-vihttp://vi.dbpedia.org/resource/
dbpedia-pthttp://pt.dbpedia.org/resource/
n42http://www.csee.umbc.edu/~lomonaco/
dbchttp://dbpedia.org/resource/Category:
dbpedia-commonshttp://commons.dbpedia.org/resource/
n32https://www.youtube.com/
n46http://api.nytimes.com/svc/semantic/v2/concept/name/nytd_des/
yagohttp://dbpedia.org/class/yago/
n37http://ta.dbpedia.org/resource/
wikidatahttp://www.wikidata.org/entity/
n22http://www.thomaswong.net/
n28https://quantum.country/
n41https://global.dbpedia.org/id/
yago-reshttp://yago-knowledge.org/resource/
n29http://plato.stanford.edu/entries/qt-quantcomp/
n33https://web.archive.org/web/20130901004919/http:/nanohub.org/resources/
n40http://ast.dbpedia.org/resource/
provhttp://www.w3.org/ns/prov#
n43http://bs.dbpedia.org/resource/
foafhttp://xmlns.com/foaf/0.1/
n27https://link.springer.com/content/pdf/10.1007/
dbpedia-zhhttp://zh.dbpedia.org/resource/
dbpedia-fahttp://fa.dbpedia.org/resource/
dbpedia-eshttp://es.dbpedia.org/resource/
freebasehttp://rdf.freebase.com/ns/
owlhttp://www.w3.org/2002/07/owl#

Statements

Subject Item
dbr:Quantum_computing
rdf:type
yago:WikicatOpenProblems owl:Thing yago:Problem114410605 yago:WikicatScienceFictionThemes yago:Profession100609953 yago:Condition113920835 yago:Application100949134 yago:State100024720 yago:Subject106599788 yago:Message106598915 yago:Class107997703 yago:YagoPermanentlyLocatedEntity yago:Communication100033020 yago:Occupation100582388 yago:Act100030358 yago:WikicatClassesOfComputers yago:Attribute100024264 yago:Use100947128 yago:Group100031264 yago:Difficulty114408086 yago:PsychologicalFeature100023100 yago:Activity100407535 yago:Collection107951464 yago:WikicatEmergingTechnologies yago:Abstraction100002137 yago:Technology100949619 yago:Event100029378
rdfs:label
Ríomhaireacht chandamach Quantum computing 量子计算 Kvantberäkning حساب كمومي Computación cuántica Computação quântica Konputazio kuantiko
rdfs:comment
A computação quântica é a ciência que estuda as aplicações das teorias e propriedades da mecânica quântica na Ciência da Computação. Dessa forma seu principal foco é o desenvolvimento do computador quântico. Na computação clássica o computador é baseado na arquitetura de Von Neumann que faz uma distinção clara entre elementos de processamento e armazenamento de dados, isto é, possui processador e memória destacados por um barramento de comunicação, sendo seu processamento sequencial. الحساب الكمومي (بالإنجليزية: Quantum computing)‏ هو أي وسيلة تعتمد على مبادئ ميكانيكا الكم وظواهره، مثل حالة التراكب الكمي والتشابك الكمي، للقيام بمعالجة البيانات. في الحواسيب التقليدية، تكون كمية البيانات مقاسة بالبت: أما في الحاسوب الكمي فتقاس كمية البيانات بالكيوبت qubit (اختصارا ل Quantum bits). المبدأ الأساسي للحوسبة الكمية هي القدرة على الاستفادة من الخواص الكمية للجسيمات لتمثيل البيانات ومعالجتها، إضافة لاستخدام قواعد ميكانيكا الكم لبناء وتنفيذ التعليمات والعمليات على هذه البيانات. Is éard is ríomhaireacht chandamach ann ná feidhm a bhaint as feiniméin meicnic-chandamacha amhail agus i gcóras ríomhaireachta. Tugtar ríomhaire candamach ar ríomhaire a dhéanann ríomhanna candamacha. Creidtear go bhfuil ríomhairí candamacha in acmhainn fadhbanna ríomhaireachtúila a réiteach i bhfad níos gasta ná ríomhairí clasaiceacha. Mar shampla, an fachtóiriú slánuimhir atá ina chnámh droma don siúd . Tá staidéar na ríomhaireachta candamaí ina foréimse d'eolaíocht na faisnéise candamaí. Quantum computing is a type of computation whose operations can harness the phenomena of quantum mechanics, such as superposition, interference, and entanglement. Devices that perform quantum computations are known as quantum computers. Though current quantum computers are too small to outperform usual (classical) computers for practical applications, larger realizations are believed to be capable of solving certain computational problems, such as integer factorization (which underlies RSA encryption), substantially faster than classical computers. The study of quantum computing is a subfield of quantum information science. La computación cuántica o informática cuántica​ es un paradigma de computación distinto al de la informática clásica o . Se basa en el uso de cubits, una especial combinación de unos y ceros. Los bits de la computación clásica pueden estar en 1 o en 0, pero solo un estado a la vez, en tanto que el cubits puede tener los dos estados simultáneamente. Esto da lugar a nuevas puertas lógicas que hacen posibles nuevos algoritmos. Konputagailu kuantikoak edo ordenagailu kuantikoak konputazio kuantikoan oinarritzen diren ordenagailuak dira. Honek esan nahi du ohiko konputagailuek ez bezala qbit-ekin lan egiten dutela, eta ez bitekin.
rdfs:seeAlso
dbr:Computability_theory dbr:Quantum_state
foaf:depiction
n25:Quantum_Toffoli_Gate_Implementation.svg n25:IBM_Q_system_(Fraunhofer_2).jpg n25:BQP_complexity_class_diagram.svg
dcterms:subject
dbc:Computational_complexity_theory dbc:Emerging_technologies dbc:Models_of_computation dbc:Open_problems dbc:Quantum_cryptography dbc:Information_theory dbc:Computer-related_introductions_in_1980 dbc:Theoretical_computer_science dbc:Quantum_computing dbc:Classes_of_computers
dbo:wikiPageID
25220
dbo:wikiPageRevisionID
1124428578
dbo:wikiPageWikiLink
dbr:Reversible_computing dbr:Time_complexity dbr:Electronic_quantum_holography dbr:P_(complexity) dbr:Optical_quantum_computing dbr:Nuclear_magnetic_resonance dbr:Double-slit_experiment dbr:Nuclear_magnetic_resonance_quantum_computer dbc:Computational_complexity_theory dbr:Lattice-based_cryptography dbr:Diamond-based_quantum_computer dbr:John_Preskill dbr:Molecule dbr:NP_(complexity) n14:IBM_Q_system_(Fraunhofer_2).jpg dbr:Helium-3 dbr:Timeline_of_quantum_computing_and_communication dbr:Fullerene dbr:Magic_state_distillation dbr:Isaac_Chuang dbr:Universal_quantum_computer dbr:Quantum_gate_teleportation dbr:Google_AI dbr:Josephson_junctions dbr:Prime_factor dbr:Quantum_information_science dbr:List_of_emerging_technologies dbc:Emerging_technologies dbr:Quantum_algorithm dbr:Computability dbr:BQP dbr:Cavity_quantum_electrodynamics dbr:Quantum_cognition dbr:Bill_Unruh dbc:Models_of_computation dbr:National_Academies_of_Sciences,_Engineering,_and_Medicine dbr:Theoretical_computer_science dbr:Quantum_decoherence dbr:Electron_donor dbr:Coding_theory dbr:Post-quantum_cryptography dbr:Silicon dbr:Password_cracking dbr:Bra–ket_notation dbr:Shor's_algorithm dbr:Quantum_wire dbr:Optical_computing dbr:NASA dbr:Gil_Kalai dbr:Ionizing_radiation dbr:List_of_quantum_processors dbr:Quantum_controllers dbr:Optical_lattice dbr:Bernstein–Vazirani_algorithm dbr:Logical_disjunction dbr:Duke_University dbc:Open_problems dbr:University_of_Science_and_Technology_of_China dbr:Topological_quantum_computer dbr:IBM_Eagle dbr:Intelligence_Advanced_Research_Projects_Activity dbr:Nitrogen_fixation dbr:Hidden_subgroup_problem dbr:Sycamore_processor dbr:PSPACE_(complexity) dbr:Quantum_logic_gates dbr:Model_of_computation dbr:Linear_optical_quantum_computing dbc:Quantum_cryptography dbr:Chemical_computer dbr:Probability dbr:Quantum_circuit dbr:Jones_polynomial dbr:Electron_paramagnetic_resonance dbr:Trapped_ion_quantum_computer dbr:Boson_sampling dbr:Summit_(supercomputer) dbr:Problem_of_time dbr:D-Wave_Systems dbr:Discrete_logarithm_problem dbr:Quantum_gate dbr:Discrete_logarithm dbr:Matrix_(mathematics) dbr:Neil_Gershenfeld dbr:Computer dbr:Diffie–Hellman dbr:One-way_quantum_computer dbr:Collider dbr:Quantum_algorithm_for_linear_systems_of_equations dbr:Natural_computing dbr:Undecidable_problem dbr:Boolean_circuit dbr:Bounded-error_probabilistic_polynomial dbr:Paul_Benioff dbr:Nitrogen-vacancy_center dbr:Richard_Feynman dbr:David_Deutsch dbr:Quasi-particle dbr:Bell_state dbr:Logical_conjunction dbr:Amplitude_amplification n14:BQP_complexity_class_diagram.svg dbr:Computation dbr:Nonlinear_optics dbr:Bit dbr:Superconducting_quantum_computing dbr:Braid_theory dbr:Haber_process dbr:Peter_Shor dbr:Google dbr:Dihedral_group dbr:Hamiltonian_(quantum_mechanics) dbr:RSA_encryption dbr:Pulse_shaping dbr:BHT_algorithm dbr:Deep_neural_networks dbr:Matrix_multiplication dbr:Phase_shift_module dbr:Symmetric-key_algorithm dbr:Loss-DiVincenzo_quantum_computer dbr:Boolean_satisfiability_problem dbr:Valleytronics dbr:McEliece_cryptosystem dbr:De_Broglie–Bohm_theory dbr:Bose–Einstein_condensate dbr:Polynomial_time dbr:Dopant dbr:Stanford_Encyclopedia_of_Philosophy dbr:Cluster_state dbr:Public_key_cryptography dbr:Mikhail_Dyakonov dbr:Nuclear_spin dbr:Cosmic_rays dbr:Probability_vector dbr:Beam_splitter dbr:Turing_machine dbr:Single-molecule_magnet dbc:Information_theory dbr:Loop_quantum_gravity dbr:Jiuzhang_(quantum_computer) dbr:Rigetti_Computing dbr:Quantum_threshold_theorem dbr:NP-complete dbr:NP-hard n14:Quantum_Toffoli_Gate_Implementation.svg dbr:Asymmetric_Algorithms dbr:Computational_biology dbr:Quantum_Fourier_transform dbr:Simon's_problem dbr:Dilution_refrigerator dbr:Computational_complexity dbr:Qubit dbr:Glossary_of_quantum_computing dbr:Quantum_simulator dbr:Integer_factorization dbr:Optical_fiber dbr:Solovay–Kitaev_theorem dbr:Quantum_annealing dbc:Computer-related_introductions_in_1980 dbr:Unitary_matrix dbr:Endohedral_fullerene dbr:Key_size dbr:Cryptanalysis dbr:Superconducting dbr:Paul_Davies dbr:RSA_(algorithm) dbr:Quantum_Computation_and_Quantum_Information dbr:RSA_(cryptosystem) dbr:Quantum_complexity_theory dbr:Cryptography dbr:Quantum_well dbr:Quantum_entanglement dbr:Boltzmann_machine dbr:Computational_problem dbr:Yuri_Manin dbr:David_P._DiVincenzo dbr:Continuous-variable_quantum_information dbr:Ammonia dbc:Quantum_computing dbr:Wave_interference dbr:Quantum_Turing_machine dbr:Logic_gate dbr:Density_matrix dbr:Quantum_cryptography dbc:Theoretical_computer_science dbr:Church–Turing_thesis dbr:Transmon dbr:Quantum_error_correction dbr:Quantum_gravity dbr:Phosphorus dbr:Quantum_state dbr:Quantum_dot dbr:Quantum_machine_learning dbr:Complex_number dbr:PSPACE dbr:CNOT dbr:Quantum_volume dbr:Kane_quantum_computer dbr:Measurement_in_quantum_mechanics dbr:Probability_amplitude dbr:Quantum_point_contact dbr:DiVincenzo's_criteria dbr:Linear_algebra dbr:Decoherence dbr:Nuclear_physics dbr:DNA_computing dbr:Grover's_algorithm dbr:Michael_Nielsen dbr:McKinsey_&_Company dbr:Sharp-P dbr:Elliptic_curve_Diffie–Hellman dbr:Quantum_bus dbr:Quantum_logic_gate dbr:IBM dbr:Normal_mode dbr:Quantum_mechanics dbr:Holographic_principle dbr:MRI dbr:Supercomputer dbr:Negation dbr:Pell's_equation dbr:Prime_number dbr:Probabilistic_Turing_machine dbc:Classes_of_computers dbr:Machine_learning dbr:Electron-on-Helium_Qubit dbr:Halting_problem dbr:Quantum_superposition dbr:Quantum_supremacy dbr:M-theory dbr:Adiabatic_quantum_computation dbr:Anyon
dbo:wikiPageExternalLink
n8:e034e7b7-d17c-4863-9cee-7e654f97225b n16: n18:mitchell98computing.html n18:simon94power.html n19:DD_lectures.htm n20:berthiaume97quantum.html n22:introduction-to-classical-and-quantum-computing-1e.pdf n27:978-3-030-61601-4.pdf n28:qcvc n29: n32:playlist%3Flist=PL1826E60FD05B44E4 n33:4778 n42:Lectures.html%23OxfordLectures
owl:sameAs
freebase:m.069kd dbpedia-ar:حساب_كمومي yago-res:Quantum_computing n17:کوانٹم_کمپیوٹنگ dbpedia-da:Kvantedatabehandling dbpedia-pt:Computação_quântica wikidata:Q17995793 dbpedia-es:Computación_cuántica freebase:m.02pr80l dbpedia-sv:Kvantberäkning dbpedia-vi:Điện_toán_lượng_tử n37:குவாண்டக்_கணினியியல் dbpedia-zh:量子计算 dbpedia-eu:Konputazio_kuantiko n40:Computación_cuántica n41:jjiC n43:Kvantno_računarstvo dbpedia-fa:رایانش_کوانتومی dbpedia-commons:Quantum_computer n46:Quantum%20Computing n47:4533372-5 dbpedia-ga:Ríomhaireacht_chandamach
dbp:wikiPageUsesTemplate
dbt:Use_dmy_dates dbt:Authority_control dbt:Main dbt:Springer dbt:Quantum_computing dbt:Efn dbt:Wikiversity dbt:Cite_book dbt:Commons dbt:See_also dbt:Short_description dbt:Cite_web dbt:Cite_journal dbt:Colend dbt:Who dbt:Sfn dbt:Tmath dbt:Notelist dbt:Cols dbt:Computer_science dbt:Refend dbt:Reflist dbt:Refbegin dbt:Quantum_mechanics_topics dbt:For_timeline dbt:Further dbt:Anchor dbt:Mvar dbt:Self-published_inline dbt:Emerging_technologies dbt:Rp
dbo:thumbnail
n25:IBM_Q_system_(Fraunhofer_2).jpg?width=300
dbp:id
p/q130020
dbp:other
yes
dbp:title
Quantum computation, theory of
dbo:abstract
الحساب الكمومي (بالإنجليزية: Quantum computing)‏ هو أي وسيلة تعتمد على مبادئ ميكانيكا الكم وظواهره، مثل حالة التراكب الكمي والتشابك الكمي، للقيام بمعالجة البيانات. في الحواسيب التقليدية، تكون كمية البيانات مقاسة بالبت: أما في الحاسوب الكمي فتقاس كمية البيانات بالكيوبت qubit (اختصارا ل Quantum bits). المبدأ الأساسي للحوسبة الكمية هي القدرة على الاستفادة من الخواص الكمية للجسيمات لتمثيل البيانات ومعالجتها، إضافة لاستخدام قواعد ميكانيكا الكم لبناء وتنفيذ التعليمات والعمليات على هذه البيانات. La computación cuántica o informática cuántica​ es un paradigma de computación distinto al de la informática clásica o . Se basa en el uso de cubits, una especial combinación de unos y ceros. Los bits de la computación clásica pueden estar en 1 o en 0, pero solo un estado a la vez, en tanto que el cubits puede tener los dos estados simultáneamente. Esto da lugar a nuevas puertas lógicas que hacen posibles nuevos algoritmos. Una misma tarea puede tener diferente complejidad en computación clásica comparada con la que tiene en computación cuántica, lo que ha dado lugar a una gran expectación, ya que algunos problemas intratables pasan a ser tratables. Mientras que un computador clásico equivale a una máquina de Turing,​ un computador cuántico equivale a una máquina de Turing cuántica. El enfoque de las computadoras cuánticas es resolver problemas de una manera fundamentalmente nueva. Los investigadores esperan que con este nuevo enfoque de la computación puedan comenzar a explorarse algunos problemas que nunca podremos resolver de otra manera. La doctora Talia Gershon (directora de Estrategia de Investigación e Iniciativas de Crecimiento en IBM) describe la computación cuántica, de manera muy general, como una combinación entre tres factores: la superposición de giros, el entrelazamiento de dos objetos y la interferencia, la cual ayuda a controlar los estados cuánticos y amplificar los tipos de señales que están orientados hacia la respuesta correcta, y luego cancelar los tipos de señales que conducen a la respuesta incorrecta. Konputagailu kuantikoak edo ordenagailu kuantikoak konputazio kuantikoan oinarritzen diren ordenagailuak dira. Honek esan nahi du ohiko konputagailuek ez bezala qbit-ekin lan egiten dutela, eta ez bitekin. Qbit-ek 3 egoera logiko izan ditzakete, ohiko bit-ak dituen 0 eta 1 eta hirugarren kasu berezi bat, 0 eta 1 aldi berean dituen kasua. Fisika kuantikoak dioenez bi posizioak batera eduki ditzakegu ‘superpotentzia’ deritzon fenomeno batean. Hirugarren egoera honetaz gain, konputagailu kuantikoek ate logiko bereziagoak (ate kuantikoak) eta batez ere algoritmo berrien inplementazioa ahalbidetzen dute. Is éard is ríomhaireacht chandamach ann ná feidhm a bhaint as feiniméin meicnic-chandamacha amhail agus i gcóras ríomhaireachta. Tugtar ríomhaire candamach ar ríomhaire a dhéanann ríomhanna candamacha. Creidtear go bhfuil ríomhairí candamacha in acmhainn fadhbanna ríomhaireachtúila a réiteach i bhfad níos gasta ná ríomhairí clasaiceacha. Mar shampla, an fachtóiriú slánuimhir atá ina chnámh droma don siúd . Tá staidéar na ríomhaireachta candamaí ina foréimse d'eolaíocht na faisnéise candamaí. Tá fréamhacha na ríomhaireachta candamaí le fáil i na bliana 1935. Thóg an fisiceoir an chéad chéim eile ag tús na 1980idí nuair a mhol sé leagan meicnic-chandamach de mheaisín Turing. Ina dhiaidh sin, dhearbhaigh Richard Feynman agus go mbeadh sé de chumas ag ríomhaire candamach rudaí a ionsamhlú nach mbeadh indéanta ag ríomhaire clasaiceach ariamh. Is é an canghiotán (giotán candamach) an bun-aonad eolais, cosúil leis an ngiotán sa ríomhaireacht clasaiceach. A computação quântica é a ciência que estuda as aplicações das teorias e propriedades da mecânica quântica na Ciência da Computação. Dessa forma seu principal foco é o desenvolvimento do computador quântico. Na computação clássica o computador é baseado na arquitetura de Von Neumann que faz uma distinção clara entre elementos de processamento e armazenamento de dados, isto é, possui processador e memória destacados por um barramento de comunicação, sendo seu processamento sequencial. Entretanto os computadores atuais possuem limitações, como por exemplo na área de Inteligência Artificial (IA), onde não existem computadores com potência ou velocidade de processamento suficiente para suportar uma IA avançada. Dessa forma surgiu a necessidade da criação de um computador alternativo dos usuais que resolvesse problemas de IA, ou outros como a fatoração em primos de números muito grandes, logaritmos discretos e simulação de problemas da Física Quântica. A Lei de Moore afirma que a velocidade de um computador é dobrada a cada 12 meses. Assim sempre houve um crescimento constante na velocidade de processamento dos computadores. Entretanto essa evolução tem um certo limite, um ponto onde não será possível aumentar essa velocidade e então se fez necessária uma revolução significativa na computação para que este obstáculo fosse quebrado. E assim os estudos em Computação Quântica se tornaram muito importantes e a necessidade do desenvolvimento de uma máquina extremamente eficiente se torna maior a cada dia. Quantum computing is a type of computation whose operations can harness the phenomena of quantum mechanics, such as superposition, interference, and entanglement. Devices that perform quantum computations are known as quantum computers. Though current quantum computers are too small to outperform usual (classical) computers for practical applications, larger realizations are believed to be capable of solving certain computational problems, such as integer factorization (which underlies RSA encryption), substantially faster than classical computers. The study of quantum computing is a subfield of quantum information science. There are several models of quantum computation with the most widely used being quantum circuits. Other models include the quantum Turing machine, quantum annealing, and adiabatic quantum computation. Most models are based on the quantum bit, or "qubit", which is somewhat analogous to the bit in classical computation. A qubit can be in a 1 or 0 quantum state, or in a superposition of the 1 and 0 states. When it is measured, however, it is always 0 or 1; the probability of either outcome depends on the qubit's quantum state immediately prior to measurement. One model that does not use qubits is continuous variable quantum computation. Efforts towards building a physical quantum computer focus on technologies such as transmons, ion traps and topological quantum computers, which aim to create high-quality qubits. These qubits may be designed differently, depending on the full quantum computer's computing model, as to whether quantum logic gates, quantum annealing, or adiabatic quantum computation are employed. There are currently a number of significant obstacles to constructing useful quantum computers. It is particularly difficult to maintain qubits' quantum states, as they suffer from quantum decoherence. Quantum computers therefore require error correction. Any computational problem that can be solved by a classical computer can also be solved by a quantum computer. Conversely, any problem that can be solved by a quantum computer can also be solved by a classical computer, at least in principle given enough time. In other words, quantum computers obey the Church–Turing thesis. This means that while quantum computers provide no additional advantages over classical computers in terms of computability, quantum algorithms for certain problems have significantly lower time complexities than corresponding known classical algorithms. Notably, quantum computers are believed to be able to quickly solve certain problems that no classical computer could solve in any feasible amount of time—a feat known as "quantum supremacy." The study of the computational complexity of problems with respect to quantum computers is known as quantum complexity theory.
dbp:quantum
yes
prov:wasDerivedFrom
wikipedia-en:Quantum_computing?oldid=1124428578&ns=0
dbo:wikiPageLength
99943
foaf:isPrimaryTopicOf
wikipedia-en:Quantum_computing