This HTML5 document contains 174 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
dbohttp://dbpedia.org/ontology/
n12http://dbpedia.org/resource/File:
foafhttp://xmlns.com/foaf/0.1/
dbpedia-kohttp://ko.dbpedia.org/resource/
n24https://global.dbpedia.org/id/
n16http://www.cse.buffalo.edu/faculty/mbeal/thesis/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
n11http://www.robots.ox.ac.uk/~sjrob/Pubs/
n13http://commons.wikimedia.org/wiki/Special:FilePath/
n25http://www.inference.phy.cam.ac.uk/mackay/itila/
dbpedia-fahttp://fa.dbpedia.org/resource/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
n20http://www.cs.jhu.edu/~jason/tutorials/
n14https://arxiv.org/abs/
owlhttp://www.w3.org/2002/07/owl#
n19http://www.gatsby.ucl.ac.uk/vbayes/
wikipedia-enhttp://en.wikipedia.org/wiki/
provhttp://www.w3.org/ns/prov#
dbphttp://dbpedia.org/property/
dbchttp://dbpedia.org/resource/Category:
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
goldhttp://purl.org/linguistics/gold/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Calculus_of_variations
dbo:wikiPageWikiLink
dbr:Variational_Bayesian_methods
Subject Item
dbr:Bayesian_model_reduction
dbo:wikiPageWikiLink
dbr:Variational_Bayesian_methods
Subject Item
dbr:Bayesian_statistics
dbo:wikiPageWikiLink
dbr:Variational_Bayesian_methods
Subject Item
dbr:Belief_propagation
dbo:wikiPageWikiLink
dbr:Variational_Bayesian_methods
Subject Item
dbr:PyMC
dbo:wikiPageWikiLink
dbr:Variational_Bayesian_methods
Subject Item
dbr:Variational_message_passing
dbo:wikiPageWikiLink
dbr:Variational_Bayesian_methods
Subject Item
dbr:One-shot_learning
dbo:wikiPageWikiLink
dbr:Variational_Bayesian_methods
Subject Item
dbr:Dynamic_causal_modeling
dbo:wikiPageWikiLink
dbr:Variational_Bayesian_methods
Subject Item
dbr:Information_field_theory
dbo:wikiPageWikiLink
dbr:Variational_Bayesian_methods
Subject Item
dbr:Generalized_filtering
dbo:wikiPageWikiLink
dbr:Variational_Bayesian_methods
Subject Item
dbr:Giuseppe_Carleo
dbo:wikiPageWikiLink
dbr:Variational_Bayesian_methods
Subject Item
dbr:Optimistic_knowledge_gradient
dbo:wikiPageWikiLink
dbr:Variational_Bayesian_methods
Subject Item
dbr:Stan_(software)
dbo:wikiPageWikiLink
dbr:Variational_Bayesian_methods
Subject Item
dbr:Latent_Dirichlet_allocation
dbo:wikiPageWikiLink
dbr:Variational_Bayesian_methods
Subject Item
dbr:Logistic_regression
dbo:wikiPageWikiLink
dbr:Variational_Bayesian_methods
Subject Item
dbr:Rectified_Gaussian_distribution
dbo:wikiPageWikiLink
dbr:Variational_Bayesian_methods
Subject Item
dbr:Diffusion_model
dbo:wikiPageWikiLink
dbr:Variational_Bayesian_methods
Subject Item
dbr:Variational_free_energy
dbo:wikiPageWikiLink
dbr:Variational_Bayesian_methods
dbo:wikiPageRedirects
dbr:Variational_Bayesian_methods
Subject Item
dbr:Posterior_probability
dbo:wikiPageWikiLink
dbr:Variational_Bayesian_methods
Subject Item
dbr:Jensen's_inequality
dbo:wikiPageWikiLink
dbr:Variational_Bayesian_methods
Subject Item
dbr:Karl_J._Friston
dbo:wikiPageWikiLink
dbr:Variational_Bayesian_methods
dbp:fields
dbr:Variational_Bayesian_methods
dbo:academicDiscipline
dbr:Variational_Bayesian_methods
Subject Item
dbr:Autoencoder
dbo:wikiPageWikiLink
dbr:Variational_Bayesian_methods
Subject Item
dbr:Free_energy_principle
dbo:wikiPageWikiLink
dbr:Variational_Bayesian_methods
Subject Item
dbr:Mean-field_theory
dbo:wikiPageWikiLink
dbr:Variational_Bayesian_methods
Subject Item
dbr:Variational
dbo:wikiPageWikiLink
dbr:Variational_Bayesian_methods
dbo:wikiPageDisambiguates
dbr:Variational_Bayesian_methods
Subject Item
dbr:Variational_Bayesian_methods
rdfs:label
변분 베이즈 방법 Variational Bayesian methods
rdfs:comment
Variational Bayesian methods are a family of techniques for approximating intractable integrals arising in Bayesian inference and machine learning. They are typically used in complex statistical models consisting of observed variables (usually termed "data") as well as unknown parameters and latent variables, with various sorts of relationships among the three types of random variables, as might be described by a graphical model. As typical in Bayesian inference, the parameters and latent variables are grouped together as "unobserved variables". Variational Bayesian methods are primarily used for two purposes: 변분 베이즈 방법은 베이즈 추론과 기계 학습에서 실제로 계산하기 힘든 적분을 근사하는데 사용되는 기술들의 집합이다. 여러 관측 변수들과 파라미터, 은닉 변수등으로 구성된 그래프 모형으로 표현될 수 있는 복잡한 통계적 모형에서 사용된다. 파라미터와 은닉 변수는 관측 변수와 대비되어 관측되지 않는 변수라고 불린다.
foaf:depiction
n13:CAVI_algorithm_explain.jpg n13:Bayesian-gaussian-mixture-vb.svg n13:Bregman_divergence_Pythagorean.png
dcterms:subject
dbc:Bayesian_statistics
dbo:wikiPageID
1208480
dbo:wikiPageRevisionID
1124670523
dbo:wikiPageWikiLink
dbr:Moment_(mathematics) dbr:Gaussian_distribution dbr:Probability_distribution dbr:One-to-one_correspondence dbr:Wishart_distribution dbr:Gaussian_mixture_model dbr:Independent_identically_distributed dbr:Maximum_entropy_discrimination n12:CAVI_algorithm_explain.jpg dbr:Normalizing_constant dbr:Mean dbr:Conjugate_prior dbr:Probability_spaces dbr:Precision_(statistics) dbr:Random_variable dbr:Monte_Carlo_sampling dbr:Marginal_likelihood dbr:Generalized_filtering dbr:Partition_of_a_set dbr:Gibbs_sampling dbr:Multinomial_distribution dbr:Limit_of_a_sequence dbr:Parameter dbr:Integral dbr:Variance dbr:Thermodynamic_free_energy dbr:Mixture_model n12:Bregman_divergence_Pythagorean.png dbr:Bayes_factor dbr:Bregman_divergence dbr:Statistical_independence dbr:Hyperparameters dbr:Probability_density_function dbr:Expectation-maximization_algorithm dbr:Gamma_distribution dbr:Bayesian_inference dbr:Hyperparameter dbr:Model_selection dbr:Normal-scaled_inverse_gamma_distribution dbr:Conditionally_independent n12:Bayesian-gaussian-mixture-vb.svg dbr:Conditional_probability_distribution dbr:Model_evidence dbr:Graphical_model dbr:Markov_chain_Monte_Carlo dbr:David_J.C._MacKay dbr:Prior_distribution dbr:Completing_the_square dbr:Expectation-maximization dbc:Bayesian_statistics dbr:Expectation_maximization dbr:Mode_(statistics) dbr:Multivariate_Gaussian_distribution dbr:Variational_message_passing dbr:Sample_(statistics) dbr:Joint_probability dbr:Bayesian_network dbr:Covariance_matrix dbr:Lower_bound dbr:Statistical_inference dbr:Probability_measure dbr:Entropy_(information_theory) dbr:Maximum_a_posteriori_estimation dbr:Expectation_propagation dbr:Normalization_constant dbr:Marginal_probability dbr:Iterative dbr:Maximum_a_posteriori dbr:Exponential_family dbr:Kullback–Leibler_divergence dbr:Posterior_distribution dbr:Expected_value dbr:Statistical_model dbr:Latent_variable dbr:Calculus_of_variations dbr:Maximum_likelihood dbr:Circular_dependency dbr:Evidence_lower_bound dbr:Joint_probability_distribution dbr:Gaussian-Wishart_distribution dbr:Gaussian-gamma_distribution dbr:Credible_interval dbr:Nonlinear dbr:Precision_matrix dbr:Posterior_probability dbr:Normal_distribution dbr:Dirichlet_distribution dbr:Categorical_distribution dbr:Machine_learning
dbo:wikiPageExternalLink
n11:fox_vbtut.pdf n14:1803.10998 n16:index.html n19: n20:variational.html n25:
owl:sameAs
freebase:m.04hcx4 wikidata:Q7915794 dbpedia-ko:변분_베이즈_방법 n24:4xacS dbpedia-fa:استنباط_بیزی_تغییراتی
dbp:wikiPageUsesTemplate
dbt:Math dbt:EquationRef dbt:Dispute_about dbt:Doi dbt:Clear dbt:Bayesian_statistics dbt:Main dbt:Short_description dbt:For dbt:Reflist
dbo:thumbnail
n13:Bregman_divergence_Pythagorean.png?width=300
dbo:abstract
Variational Bayesian methods are a family of techniques for approximating intractable integrals arising in Bayesian inference and machine learning. They are typically used in complex statistical models consisting of observed variables (usually termed "data") as well as unknown parameters and latent variables, with various sorts of relationships among the three types of random variables, as might be described by a graphical model. As typical in Bayesian inference, the parameters and latent variables are grouped together as "unobserved variables". Variational Bayesian methods are primarily used for two purposes: 1. * To provide an analytical approximation to the posterior probability of the unobserved variables, in order to do statistical inference over these variables. 2. * To derive a lower bound for the marginal likelihood (sometimes called the evidence) of the observed data (i.e. the marginal probability of the data given the model, with marginalization performed over unobserved variables). This is typically used for performing model selection, the general idea being that a higher marginal likelihood for a given model indicates a better fit of the data by that model and hence a greater probability that the model in question was the one that generated the data. (See also the Bayes factor article.) In the former purpose (that of approximating a posterior probability), variational Bayes is an alternative to Monte Carlo sampling methods—particularly, Markov chain Monte Carlo methods such as Gibbs sampling—for taking a fully Bayesian approach to statistical inference over complex distributions that are difficult to evaluate directly or sample. In particular, whereas Monte Carlo techniques provide a numerical approximation to the exact posterior using a set of samples, variational Bayes provides a locally-optimal, exact analytical solution to an approximation of the posterior. Variational Bayes can be seen as an extension of the expectation-maximization (EM) algorithm from maximum a posteriori estimation (MAP estimation) of the single most probable value of each parameter to fully Bayesian estimation which computes (an approximation to) the entire posterior distribution of the parameters and latent variables. As in EM, it finds a set of optimal parameter values, and it has the same alternating structure as does EM, based on a set of interlocked (mutually dependent) equations that cannot be solved analytically. For many applications, variational Bayes produces solutions of comparable accuracy to Gibbs sampling at greater speed. However, deriving the set of equations used to update the parameters iteratively often requires a large amount of work compared with deriving the comparable Gibbs sampling equations. This is the case even for many models that are conceptually quite simple, as is demonstrated below in the case of a basic non-hierarchical model with only two parameters and no latent variables. 변분 베이즈 방법은 베이즈 추론과 기계 학습에서 실제로 계산하기 힘든 적분을 근사하는데 사용되는 기술들의 집합이다. 여러 관측 변수들과 파라미터, 은닉 변수등으로 구성된 그래프 모형으로 표현될 수 있는 복잡한 통계적 모형에서 사용된다. 파라미터와 은닉 변수는 관측 변수와 대비되어 관측되지 않는 변수라고 불린다.
gold:hypernym
dbr:Family
prov:wasDerivedFrom
wikipedia-en:Variational_Bayesian_methods?oldid=1124670523&ns=0
dbo:wikiPageLength
56215
foaf:isPrimaryTopicOf
wikipedia-en:Variational_Bayesian_methods
Subject Item
dbr:Expectation_propagation
dbo:wikiPageWikiLink
dbr:Variational_Bayesian_methods
Subject Item
dbr:List_of_statistics_articles
dbo:wikiPageWikiLink
dbr:Variational_Bayesian_methods
Subject Item
dbr:List_of_things_named_after_Thomas_Bayes
dbo:wikiPageWikiLink
dbr:Variational_Bayesian_methods
Subject Item
dbr:Unsupervised_learning
dbo:wikiPageWikiLink
dbr:Variational_Bayesian_methods
Subject Item
dbr:Occam's_razor
dbo:wikiPageWikiLink
dbr:Variational_Bayesian_methods
Subject Item
dbr:Evidence_lower_bound
dbo:wikiPageWikiLink
dbr:Variational_Bayesian_methods
Subject Item
dbr:Wake-sleep_algorithm
dbo:wikiPageWikiLink
dbr:Variational_Bayesian_methods
Subject Item
dbr:Variational_autoencoder
dbo:wikiPageWikiLink
dbr:Variational_Bayesian_methods
Subject Item
dbr:Stein_discrepancy
dbo:wikiPageWikiLink
dbr:Variational_Bayesian_methods
Subject Item
dbr:Variational_Bayes
dbo:wikiPageWikiLink
dbr:Variational_Bayesian_methods
dbo:wikiPageRedirects
dbr:Variational_Bayesian_methods
Subject Item
dbr:Variational_Bayesian_method
dbo:wikiPageWikiLink
dbr:Variational_Bayesian_methods
dbo:wikiPageRedirects
dbr:Variational_Bayesian_methods
Subject Item
dbr:Variational_bayes
dbo:wikiPageWikiLink
dbr:Variational_Bayesian_methods
dbo:wikiPageRedirects
dbr:Variational_Bayesian_methods
Subject Item
dbr:Variational_inference
dbo:wikiPageWikiLink
dbr:Variational_Bayesian_methods
dbo:wikiPageRedirects
dbr:Variational_Bayesian_methods
Subject Item
wikipedia-en:Variational_Bayesian_methods
foaf:primaryTopic
dbr:Variational_Bayesian_methods