This HTML5 document contains 44 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n4https://global.dbpedia.org/id/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
wikipedia-enhttp://en.wikipedia.org/wiki/
provhttp://www.w3.org/ns/prov#
dbchttp://dbpedia.org/resource/Category:
dbphttp://dbpedia.org/property/
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
goldhttp://purl.org/linguistics/gold/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:John_Robert_Schrieffer
dbo:wikiPageWikiLink
dbr:Schrieffer–Wolff_transformation
dbp:knownFor
dbr:Schrieffer–Wolff_transformation
dbo:knownFor
dbr:Schrieffer–Wolff_transformation
Subject Item
dbr:T-J_model
dbo:wikiPageWikiLink
dbr:Schrieffer–Wolff_transformation
Subject Item
dbr:Kondo_effect
dbo:wikiPageWikiLink
dbr:Schrieffer–Wolff_transformation
Subject Item
dbr:Kondo_model
dbo:wikiPageWikiLink
dbr:Schrieffer–Wolff_transformation
Subject Item
dbr:Joaquin_Mazdak_Luttinger
dbo:wikiPageWikiLink
dbr:Schrieffer–Wolff_transformation
Subject Item
dbr:Schrieffer-Wolff_transformation
dbo:wikiPageWikiLink
dbr:Schrieffer–Wolff_transformation
dbo:wikiPageRedirects
dbr:Schrieffer–Wolff_transformation
Subject Item
dbr:Schrieffer–Wolff_transformation
rdf:type
dbo:ProgrammingLanguage
rdfs:label
Schrieffer–Wolff transformation
rdfs:comment
In quantum mechanics, the Schrieffer–Wolff transformation is a unitary transformation used to perturbatively diagonalize the system Hamiltonian to first order in the interaction. As such, the Schrieffer–Wolff transformation is an operator version of second-order perturbation theory. The Schrieffer–Wolff transformation is often used to project out the high energy excitations of a given quantum many-body Hamiltonian in order to obtain an effective low energy model. The Schrieffer–Wolff transformation thus provides a controlled perturbative way to study the strong coupling regime of quantum-many body Hamiltonians.
dcterms:subject
dbc:Quantum_mechanics
dbo:wikiPageID
37696533
dbo:wikiPageRevisionID
1113911664
dbo:wikiPageWikiLink
dbr:Perturbation_theory_(quantum_mechanics) dbr:Joaquin_Mazdak_Luttinger dbr:Effective_field_theory dbr:Unitary_transformation dbc:Quantum_mechanics dbr:Baker–Campbell–Hausdorff_formula dbr:Walter_Kohn dbr:Diagonalizable_matrix dbr:Anderson_impurity_model dbr:Kondo_model dbr:K·p_perturbation_theory dbr:Projection_(linear_algebra) dbr:John_Robert_Schrieffer dbr:Quantum_mechanics dbr:Hamiltonian_(quantum_mechanics)
owl:sameAs
n4:4uJ6Z freebase:m.011v64n9 wikidata:Q7432882
dbp:wikiPageUsesTemplate
dbt:Short_description dbt:Quantum-stub dbt:Cite_book dbt:Reflist dbt:More_citations_needed
dbo:abstract
In quantum mechanics, the Schrieffer–Wolff transformation is a unitary transformation used to perturbatively diagonalize the system Hamiltonian to first order in the interaction. As such, the Schrieffer–Wolff transformation is an operator version of second-order perturbation theory. The Schrieffer–Wolff transformation is often used to project out the high energy excitations of a given quantum many-body Hamiltonian in order to obtain an effective low energy model. The Schrieffer–Wolff transformation thus provides a controlled perturbative way to study the strong coupling regime of quantum-many body Hamiltonians. Although commonly attributed to the paper in which the Kondo model was obtained from the Anderson impurity model by J.R. Schrieffer and P.A. Wolff., Joaquin Mazdak Luttinger and Walter Kohn used this method in an earlier work about non-periodic k·p perturbation theory. Using the Schrieffer–Wolff transformation, the high energy charge excitations present in Anderson impurity model are projected out and a low energy effective Hamiltonian is obtained which has only virtual charge fluctuations. For the Anderson impurity model case, the Schrieffer–Wolff transformation showed that the Kondo model lies in the strong coupling regime of the Anderson impurity model.
gold:hypernym
dbr:Transformation
prov:wasDerivedFrom
wikipedia-en:Schrieffer–Wolff_transformation?oldid=1113911664&ns=0
dbo:wikiPageLength
11427
foaf:isPrimaryTopicOf
wikipedia-en:Schrieffer–Wolff_transformation
Subject Item
wikipedia-en:Schrieffer–Wolff_transformation
foaf:primaryTopic
dbr:Schrieffer–Wolff_transformation