This HTML5 document contains 56 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n5https://global.dbpedia.org/id/
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
wikipedia-enhttp://en.wikipedia.org/wiki/
provhttp://www.w3.org/ns/prov#
dbchttp://dbpedia.org/resource/Category:
xsdhhttp://www.w3.org/2001/XMLSchema#
goldhttp://purl.org/linguistics/gold/
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/
dbpedia-jahttp://ja.dbpedia.org/resource/

Statements

Subject Item
dbr:Non-abelian_classfield_theory
dbo:wikiPageWikiLink
dbr:Non-abelian_class_field_theory
dbo:wikiPageRedirects
dbr:Non-abelian_class_field_theory
Subject Item
dbr:Nonabelian_classfield_theory
dbo:wikiPageWikiLink
dbr:Non-abelian_class_field_theory
dbo:wikiPageRedirects
dbr:Non-abelian_class_field_theory
Subject Item
dbr:Vladimir_Drinfeld
dbo:wikiPageWikiLink
dbr:Non-abelian_class_field_theory
Subject Item
dbr:Non-abelian
dbo:wikiPageWikiLink
dbr:Non-abelian_class_field_theory
dbo:wikiPageDisambiguates
dbr:Non-abelian_class_field_theory
Subject Item
dbr:Non-abelian_class_field_theory
rdfs:label
Non-abelian class field theory 非可換類体論
rdfs:comment
数学において、非可換類体論(ひかかんるいたいろん、英: non-abelian class field theory)は、類体論の結果、任意の代数体 K のアーベル拡大についての比較的完全で古典的な一連の結果の、一般のガロワ拡大 L/K への拡張を意味するキャッチフレーズである。拡大の群が可換な場合の理論である類体論は1930年頃には本質的には知られるところとなったが、それを非可換の場合に拡張する理論は、まだ誰もが認める確定した定式化には至っていない。 In mathematics, non-abelian class field theory is a catchphrase, meaning the extension of the results of class field theory, the relatively complete and classical set of results on abelian extensions of any number field K, to the general Galois extension L/K. While class field theory was essentially known by 1930, the corresponding non-abelian theory has never been formulated in a definitive and accepted sense.
dcterms:subject
dbc:Class_field_theory
dbo:wikiPageID
8354260
dbo:wikiPageRevisionID
1122958541
dbo:wikiPageWikiLink
dbr:Galois_group dbr:Class_field_theory dbr:Galois_extension dbr:Claude_Chevalley dbr:Group_cohomology dbr:Number_field dbr:Mathematics dbr:Artin_reciprocity dbr:Dirichlet_series dbr:Langlands_correspondence dbr:Frobenioid dbr:Artin_L-function dbr:Anabelian_geometry dbr:Automorphic_representation dbr:Splitting_of_prime_ideals_in_a_Galois_extension dbr:Emil_Artin dbr:Fundamental_theorem_of_Galois_theory dbr:Abelian_extension dbr:L-function dbc:Class_field_theory dbr:Langlands_program dbr:Idele_class_group
owl:sameAs
n5:4sXQf dbpedia-ja:非可換類体論 freebase:m.0270h3c wikidata:Q7048823
dbo:abstract
数学において、非可換類体論(ひかかんるいたいろん、英: non-abelian class field theory)は、類体論の結果、任意の代数体 K のアーベル拡大についての比較的完全で古典的な一連の結果の、一般のガロワ拡大 L/K への拡張を意味するキャッチフレーズである。拡大の群が可換な場合の理論である類体論は1930年頃には本質的には知られるところとなったが、それを非可換の場合に拡張する理論は、まだ誰もが認める確定した定式化には至っていない。 In mathematics, non-abelian class field theory is a catchphrase, meaning the extension of the results of class field theory, the relatively complete and classical set of results on abelian extensions of any number field K, to the general Galois extension L/K. While class field theory was essentially known by 1930, the corresponding non-abelian theory has never been formulated in a definitive and accepted sense.
gold:hypernym
dbr:Catchphrase
prov:wasDerivedFrom
wikipedia-en:Non-abelian_class_field_theory?oldid=1122958541&ns=0
dbo:wikiPageLength
3718
foaf:isPrimaryTopicOf
wikipedia-en:Non-abelian_class_field_theory
Subject Item
dbr:Glossary_of_areas_of_mathematics
dbo:wikiPageWikiLink
dbr:Non-abelian_class_field_theory
Subject Item
dbr:Galois_cohomology
dbo:wikiPageWikiLink
dbr:Non-abelian_class_field_theory
Subject Item
dbr:Hilbert's_ninth_problem
dbo:wikiPageWikiLink
dbr:Non-abelian_class_field_theory
Subject Item
dbr:Hilbert's_problems
dbo:wikiPageWikiLink
dbr:Non-abelian_class_field_theory
Subject Item
dbr:Artin_L-function
dbo:wikiPageWikiLink
dbr:Non-abelian_class_field_theory
Subject Item
dbr:Mark_Trodden
dbo:wikiPageWikiLink
dbr:Non-abelian_class_field_theory
Subject Item
dbr:Class_field_theory
dbo:wikiPageWikiLink
dbr:Non-abelian_class_field_theory
Subject Item
dbr:Nonabelian_class_field_theory
dbo:wikiPageWikiLink
dbr:Non-abelian_class_field_theory
dbo:wikiPageRedirects
dbr:Non-abelian_class_field_theory
Subject Item
wikipedia-en:Non-abelian_class_field_theory
foaf:primaryTopic
dbr:Non-abelian_class_field_theory