This HTML5 document contains 129 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
dbohttp://dbpedia.org/ontology/
n18http://dbpedia.org/resource/File:
foafhttp://xmlns.com/foaf/0.1/
n17https://global.dbpedia.org/id/
dbpedia-ruhttp://ru.dbpedia.org/resource/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
dbpedia-plhttp://pl.dbpedia.org/resource/
n13https://zenodo.org/record/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
dbpedia-frhttp://fr.dbpedia.org/resource/
wikipedia-enhttp://en.wikipedia.org/wiki/
provhttp://www.w3.org/ns/prov#
dbphttp://dbpedia.org/property/
dbchttp://dbpedia.org/resource/Category:
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Bell_number
dbo:wikiPageWikiLink
dbr:Method_of_steepest_descent
Subject Item
dbr:List_of_complex_analysis_topics
dbo:wikiPageWikiLink
dbr:Method_of_steepest_descent
Subject Item
dbr:Saddle-point_approximation
dbo:wikiPageWikiLink
dbr:Method_of_steepest_descent
dbo:wikiPageRedirects
dbr:Method_of_steepest_descent
Subject Item
dbr:Saddle-point_method
dbo:wikiPageWikiLink
dbr:Method_of_steepest_descent
dbo:wikiPageRedirects
dbr:Method_of_steepest_descent
Subject Item
dbr:Saddle_point_approximation
dbo:wikiPageWikiLink
dbr:Method_of_steepest_descent
dbo:wikiPageRedirects
dbr:Method_of_steepest_descent
Subject Item
dbr:Saddle_point_method
dbo:wikiPageWikiLink
dbr:Method_of_steepest_descent
dbo:wikiPageRedirects
dbr:Method_of_steepest_descent
Subject Item
dbr:Peter_Debye
dbo:wikiPageWikiLink
dbr:Method_of_steepest_descent
Subject Item
dbr:Riemann–Siegel_formula
dbo:wikiPageWikiLink
dbr:Method_of_steepest_descent
Subject Item
dbr:Nørlund–Rice_integral
dbo:wikiPageWikiLink
dbr:Method_of_steepest_descent
Subject Item
dbr:Common_integrals_in_quantum_field_theory
dbo:wikiPageWikiLink
dbr:Method_of_steepest_descent
Subject Item
dbr:Convex_optimization
dbo:wikiPageWikiLink
dbr:Method_of_steepest_descent
Subject Item
dbr:Analytic_Combinatorics
dbo:wikiPageWikiLink
dbr:Method_of_steepest_descent
Subject Item
dbr:Morse_theory
dbo:wikiPageWikiLink
dbr:Method_of_steepest_descent
Subject Item
dbr:Stirling's_approximation
dbo:wikiPageWikiLink
dbr:Method_of_steepest_descent
Subject Item
dbr:Zlatko_Tesanovic
dbo:wikiPageWikiLink
dbr:Method_of_steepest_descent
Subject Item
dbr:Partition_of_unity
dbo:wikiPageWikiLink
dbr:Method_of_steepest_descent
Subject Item
dbr:Stationary_phase_approximation
dbo:wikiPageWikiLink
dbr:Method_of_steepest_descent
Subject Item
dbr:Darwin–Fowler_method
dbo:wikiPageWikiLink
dbr:Method_of_steepest_descent
Subject Item
dbr:WKB_approximation
dbo:wikiPageWikiLink
dbr:Method_of_steepest_descent
Subject Item
dbr:Briggs–Bers_criterion
dbo:wikiPageWikiLink
dbr:Method_of_steepest_descent
Subject Item
dbr:Gribov_ambiguity
dbo:wikiPageWikiLink
dbr:Method_of_steepest_descent
Subject Item
dbr:Asymptotic_expansion
dbo:wikiPageWikiLink
dbr:Method_of_steepest_descent
Subject Item
dbr:Asymptotic_analysis
dbo:wikiPageWikiLink
dbr:Method_of_steepest_descent
Subject Item
dbr:Laplace's_method
dbo:wikiPageWikiLink
dbr:Method_of_steepest_descent
Subject Item
dbr:Korteweg–De_Vries_equation
dbo:wikiPageWikiLink
dbr:Method_of_steepest_descent
Subject Item
dbr:Method_of_moments_(electromagnetics)
dbo:wikiPageWikiLink
dbr:Method_of_steepest_descent
Subject Item
dbr:Method_of_steepest_descent
rdfs:label
Metoda najszybszego spadku Method of steepest descent Метод перевала Méthode du point col
rdfs:comment
In mathematics, the method of steepest descent or saddle-point method is an extension of Laplace's method for approximating an integral, where one deforms a contour integral in the complex plane to pass near a stationary point (saddle point), in roughly the direction of steepest descent or stationary phase. The saddle-point approximation is used with integrals in the complex plane, whereas Laplace’s method is used with real integrals. The integral to be estimated is often of the form Metoda najszybszego spadku – algorytm numeryczny mający na celu znalezienie minimum zadanej funkcji celu. Metoda najszybszego spadku jest modyfikacją metody gradientu prostego. En mathématiques, la méthode du point col (aussi appelée méthode du col, méthode de la plus grande pente ou méthode de la descente rapide ; en anglais, saddle point approximation ou SPA) permet d'évaluer le comportement asymptotique d'une intégrale complexe du type : lorsque . Les fonctions et sont analytiques et est un chemin d'intégration du plan complexe. Метод перевала — метод, использующийся для аппроксимации интегралов вида где — некоторые мероморфные функции, — некоторое большое число, а контур может быть бесконечным. Этот метод часто называется обобщением метода Лапласа.
dcterms:subject
dbc:Perturbation_theory dbc:Asymptotic_analysis
dbo:wikiPageID
27082137
dbo:wikiPageRevisionID
1107236129
dbo:wikiPageWikiLink
dbr:Stationary_phase_approximation dbr:Random_matrices dbr:One-to-one_function dbr:Caustic_(optics) dbr:Open_cover dbr:Jacobian_matrix_and_determinant dbr:Bounded_set_(topological_vector_space) dbr:Cauchy–Riemann_equations dbr:Jordan_normal_form dbr:Complex_sphere dbr:Chain_rule dbr:Sylvester's_law_of_inertia dbr:Mathematical_induction dbr:Riemann–Hilbert_factorization dbr:Maslov_index dbr:Connected_space dbr:Partition_of_unity dbr:Morse_theory dbc:Perturbation_theory dbr:Integrable_model dbr:Open_set dbr:Soliton dbr:Method_of_steepest_descent n18:Illustration_To_Derivation_Of_Asymptotic_For_Saddle_Point_Integration.pdf dbr:Holomorphic_function dbr:Laplace's_method dbr:Catastrophe_theory dbr:Hessian_matrix dbc:Asymptotic_analysis dbr:Bessel_functions dbr:WKB_approximation dbr:Saddle_point n18:Complex_Morse_Lemma_Illustration.pdf dbr:Eigenvalues_and_eigenvectors dbr:Analytic_function dbr:Hypergeometric_functions dbr:Simply_connected_space dbr:Pearcey_integral dbr:Definite_bilinear_form dbr:Combinatorics dbr:Riemann–Siegel_formula
dbo:wikiPageExternalLink
n13:2397260
owl:sameAs
wikidata:Q1997812 dbpedia-fr:Méthode_du_point_col dbpedia-ru:Метод_перевала n17:uSPf dbpedia-pl:Metoda_najszybszego_spadku freebase:m.02zr_k
dbp:wikiPageUsesTemplate
dbt:Eom dbt:Harvtxt dbt:Reflist dbt:For dbt:= dbt:Math_proof dbt:Mvar dbt:EquationRef dbt:Cite_arXiv dbt:Math dbt:Citation dbt:NumBlk
dbp:first
M. V.
dbp:last
Fedoryuk
dbp:proof
The following proof is a straightforward generalization of the proof of the real Morse Lemma, which can be found in. We begin by demonstrating :Auxiliary statement. Let be holomorphic in a neighborhood of the origin and . Then in some neighborhood, there exist functions such that where each is holomorphic and From the identity : we conclude that : and : Without loss of generality, we translate the origin to , such that and . Using the Auxiliary Statement, we have : Since the origin is a saddle point, : we can also apply the Auxiliary Statement to the functions and obtain Recall that an arbitrary matrix can be represented as a sum of symmetric and anti-symmetric matrices, : The contraction of any symmetric matrix B with an arbitrary matrix is i.e., the anti-symmetric component of does not contribute because : Thus, in equation can be assumed to be symmetric with respect to the interchange of the indices and . Note that : hence, because the origin is a non-degenerate saddle point. Let us show by induction that there are local coordinates , such that First, assume that there exist local coordinates , such that where is symmetric due to equation . By a linear change of the variables , we can assure that . From the chain rule, we have : Therefore: : whence, : The matrix can be recast in the Jordan normal form: , were gives the desired non-singular linear transformation and the diagonal of contains non-zero eigenvalues of . If then, due to continuity of , it must be also non-vanishing in some neighborhood of the origin. Having introduced , we write : Motivated by the last expression, we introduce new coordinates : The change of the variables is locally invertible since the corresponding Jacobian is non-zero, : Therefore, Comparing equations and , we conclude that equation is verified. Denoting the eigenvalues of by , equation can be rewritten as Therefore, From equation , it follows that . The Jordan normal form of reads , where is an upper diagonal matrix containing the eigenvalues and ; hence, . We obtain from equation : If , then interchanging two variables assures that . thumb|center|An illustration to the derivation of equation (8) First, we deform the contour into a new contour passing through the saddle point and sharing the boundary with . This deformation does not change the value of the integral . We employ the Complex Morse Lemma to change the variables of integration. According to the lemma, the function maps a neighborhood onto a neighborhood containing the origin. The integral can be split into two: , where is the integral over , while is over . Since the latter region does not contain the saddle point , the value of is exponentially smaller than as ; thus, is ignored. Introducing the contour such that , we have Recalling that as well as , we expand the pre-exponential function into a Taylor series and keep just the leading zero-order term Here, we have substituted the integration region by because both contain the origin, which is a saddle point, hence they are equal up to an exponentially small term. The integrals in the r.h.s. of equation can be expressed as From this representation, we conclude that condition must be satisfied in order for the r.h.s. and l.h.s. of equation to coincide. According to assumption 2, is a negatively defined quadratic form implying the existence of the integral , which is readily calculated :
dbp:title
Saddle point method Derivation of equation Proof of complex Morse lemma
dbo:abstract
Метод перевала — метод, использующийся для аппроксимации интегралов вида где — некоторые мероморфные функции, — некоторое большое число, а контур может быть бесконечным. Этот метод часто называется обобщением метода Лапласа. In mathematics, the method of steepest descent or saddle-point method is an extension of Laplace's method for approximating an integral, where one deforms a contour integral in the complex plane to pass near a stationary point (saddle point), in roughly the direction of steepest descent or stationary phase. The saddle-point approximation is used with integrals in the complex plane, whereas Laplace’s method is used with real integrals. The integral to be estimated is often of the form where C is a contour, and λ is large. One version of the method of steepest descent deforms the contour of integration C into a new path integration C′ so that the following conditions hold: 1. * C′ passes through one or more zeros of the derivative g′(z), 2. * the imaginary part of g(z) is constant on C′. The method of steepest descent was first published by , who used it to estimate Bessel functions and pointed out that it occurred in the unpublished note by about hypergeometric functions. The contour of steepest descent has a minimax property, see . described some other unpublished notes of Riemann, where he used this method to derive the Riemann–Siegel formula. Metoda najszybszego spadku – algorytm numeryczny mający na celu znalezienie minimum zadanej funkcji celu. Metoda najszybszego spadku jest modyfikacją metody gradientu prostego. En mathématiques, la méthode du point col (aussi appelée méthode du col, méthode de la plus grande pente ou méthode de la descente rapide ; en anglais, saddle point approximation ou SPA) permet d'évaluer le comportement asymptotique d'une intégrale complexe du type : lorsque . Les fonctions et sont analytiques et est un chemin d'intégration du plan complexe. Bien que reposant sur des concepts différents, la méthode du point col est généralement considérée comme l'extension de la méthode de la phase stationnaire aux intégrales complexes. Cette méthode est notamment utilisée en combinatoire analytique et en mécanique statistique.
prov:wasDerivedFrom
wikipedia-en:Method_of_steepest_descent?oldid=1107236129&ns=0
dbo:wikiPageLength
31290
foaf:isPrimaryTopicOf
wikipedia-en:Method_of_steepest_descent
Subject Item
dbr:Variable_neighborhood_search
dbo:wikiPageWikiLink
dbr:Method_of_steepest_descent
Subject Item
dbr:Riemann–Lebesgue_lemma
dbo:wikiPageWikiLink
dbr:Method_of_steepest_descent
Subject Item
dbr:Natural_resonance_theory
dbo:wikiPageWikiLink
dbr:Method_of_steepest_descent
Subject Item
dbr:Video_super-resolution
dbo:wikiPageWikiLink
dbr:Method_of_steepest_descent
Subject Item
dbr:Saddlepoint_approximation_method
dbo:wikiPageWikiLink
dbr:Method_of_steepest_descent
Subject Item
dbr:Riemann–Hilbert_problem
dbo:wikiPageWikiLink
dbr:Method_of_steepest_descent
Subject Item
dbr:Stationary_phase_method
dbo:wikiPageWikiLink
dbr:Method_of_steepest_descent
dbo:wikiPageRedirects
dbr:Method_of_steepest_descent
Subject Item
dbr:Steepest_descent_method
dbo:wikiPageWikiLink
dbr:Method_of_steepest_descent
dbo:wikiPageRedirects
dbr:Method_of_steepest_descent
Subject Item
dbr:Steepest_descent_methods
dbo:wikiPageWikiLink
dbr:Method_of_steepest_descent
dbo:wikiPageRedirects
dbr:Method_of_steepest_descent
Subject Item
wikipedia-en:Method_of_steepest_descent
foaf:primaryTopic
dbr:Method_of_steepest_descent