This HTML5 document contains 83 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
dbohttp://dbpedia.org/ontology/
n8http://dbpedia.org/resource/File:
foafhttp://xmlns.com/foaf/0.1/
n16https://global.dbpedia.org/id/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
n7http://commons.wikimedia.org/wiki/Special:FilePath/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
wikipedia-enhttp://en.wikipedia.org/wiki/
dbphttp://dbpedia.org/property/
provhttp://www.w3.org/ns/prov#
dbchttp://dbpedia.org/resource/Category:
xsdhhttp://www.w3.org/2001/XMLSchema#
n14https://doi.org/10.1016/
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Local_linearization_method
rdfs:label
Local linearization method
rdfs:comment
In numerical analysis, the local linearization (LL) method is a general strategy for designing numerical integrators for differential equations based on a local (piecewise) linearization of the given equation on consecutive time intervals. The numerical integrators are then iteratively defined as the solution of the resulting piecewise linear equation at the end of each consecutive interval. The LL method has been developed for a variety of equations such as the ordinary, delayed, random and stochastic differential equations. The LL integrators are key component in the implementation of inference methods for the estimation of unknown parameters and unobserved variables of differential equations given time series of (potentially noisy) observations. The LL schemes are ideals to deal with co
foaf:depiction
n7:Figure_ODE.jpg n7:Figure_WSDE.png n7:FigureRDE1.png n7:FigureSSDE4.png n7:Figure_DDE.png
dcterms:subject
dbc:Numerical_integration_(quadrature) dbc:Numerical_analysis
dbo:wikiPageID
54366688
dbo:wikiPageRevisionID
1090497193
dbo:wikiPageWikiLink
dbr:Numerical_methods_for_ordinary_differential_equations dbr:Runge–Kutta_methods dbr:Random_dynamical_system dbr:Hyperbolic_equilibrium_point dbr:Dormand–Prince_method dbr:Taylor_series dbr:Neuroscience dbr:Moment_(mathematics) dbr:Mathematical_statistics dbr:Realization_(probability) dbr:Forestry dbr:Numerical_analysis dbr:Hurst_exponent dbr:Numerical_integration dbr:Stiff_equation dbr:Control_engineering dbr:Convergence_in_probability dbr:Symplectic_geometry n8:FigureRDE1.png dbr:Phase_portrait n8:FigureSSDE4.png dbr:Fractional_Brownian_motion n8:Figure_DDE.png n8:Figure_ODE.jpg n8:Figure_WSDE.png dbr:Ordinary_differential_equation dbr:Normal_distribution dbr:Dynamical_system dbr:Equilibrium_point dbr:Autonomous_system_(mathematics) dbr:Discretization dbr:Block_matrix dbc:Numerical_integration_(quadrature) dbr:Stable_manifold dbr:Stochastic_differential_equation dbr:L-stability dbr:Hamiltonian_mechanics dbr:Backward_difference dbr:Stratonovich_integral dbr:Variation_of_parameters dbr:Harmonic_oscillator dbr:Krylov_subspace dbr:Wiener_process dbr:Delay_differential_equation dbr:Estimation_theory dbr:Recursion_(computer_science) dbr:Padé_approximant dbr:Floating-point_arithmetic dbr:Independent_and_identically_distributed_random_variables dbc:Numerical_analysis dbr:Stability_theory dbr:Pullback_attractor dbr:Stochastic_process dbr:Finance dbr:Rate_of_convergence dbr:Time_series dbr:Ergodicity dbr:Bernoulli_distribution dbr:Convergence_of_random_variables dbr:Hermite_polynomials dbr:Limit_cycle
dbo:wikiPageExternalLink
n14:S0022-5193(05)80142-0
owl:sameAs
n16:D74Tx wikidata:Q97360187
dbp:wikiPageUsesTemplate
dbt:Reflist
dbo:thumbnail
n7:Figure_ODE.jpg?width=300
dbo:abstract
In numerical analysis, the local linearization (LL) method is a general strategy for designing numerical integrators for differential equations based on a local (piecewise) linearization of the given equation on consecutive time intervals. The numerical integrators are then iteratively defined as the solution of the resulting piecewise linear equation at the end of each consecutive interval. The LL method has been developed for a variety of equations such as the ordinary, delayed, random and stochastic differential equations. The LL integrators are key component in the implementation of inference methods for the estimation of unknown parameters and unobserved variables of differential equations given time series of (potentially noisy) observations. The LL schemes are ideals to deal with complex models in a variety of fields as neuroscience, finance, forestry management, control engineering, mathematical statistics, etc.
prov:wasDerivedFrom
wikipedia-en:Local_linearization_method?oldid=1090497193&ns=0
dbo:wikiPageLength
61691
foaf:isPrimaryTopicOf
wikipedia-en:Local_linearization_method
Subject Item
dbr:Numerical_analysis
dbo:wikiPageWikiLink
dbr:Local_linearization_method
Subject Item
wikipedia-en:Local_linearization_method
foaf:primaryTopic
dbr:Local_linearization_method