This HTML5 document contains 78 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
yago-reshttp://yago-knowledge.org/resource/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n17https://global.dbpedia.org/id/
yagohttp://dbpedia.org/class/yago/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
wikipedia-enhttp://en.wikipedia.org/wiki/
provhttp://www.w3.org/ns/prov#
dbchttp://dbpedia.org/resource/Category:
dbphttp://dbpedia.org/property/
xsdhhttp://www.w3.org/2001/XMLSchema#
goldhttp://purl.org/linguistics/gold/
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Calculus_of_variations
dbo:wikiPageWikiLink
dbr:Inverse_problem_for_Lagrangian_mechanics
Subject Item
dbr:Inverse_problem_for_Lagrangian_mechanics
rdf:type
dbo:Disease yago:State100024720 yago:WikicatInverseProblems yago:Attribute100024264 yago:Condition113920835 yago:Problem114410605 yago:Difficulty114408086 yago:Abstraction100002137
rdfs:label
Inverse problem for Lagrangian mechanics
rdfs:comment
In mathematics, the inverse problem for Lagrangian mechanics is the problem of determining whether a given system of ordinary differential equations can arise as the Euler–Lagrange equations for some Lagrangian function.
dcterms:subject
dbc:Inverse_problems dbc:Lagrangian_mechanics dbc:Calculus_of_variations
dbo:wikiPageID
10452186
dbo:wikiPageRevisionID
1117662491
dbo:wikiPageWikiLink
dbr:Necessary_and_sufficient dbr:Geodesic_flow dbr:Manifold dbr:Hermann_von_Helmholtz dbr:Lie_group dbr:Parallelizable_manifold dbr:Principle_of_least_action dbr:Dimension dbr:Tangent_bundle dbr:Jesse_Douglas dbr:Symmetric_matrix dbr:Non-singular dbr:Ordinary_differential_equation dbr:Functional_(mathematics) dbr:If_and_only_if dbr:Path_(topology) dbr:Differentiable_function dbc:Lagrangian_mechanics dbr:Mathematician dbr:United_States dbr:Picard–Lindelöf_theorem dbr:Mathematics dbr:Newton's_laws_of_motion dbc:Inverse_problems dbr:Physicist dbr:Closed_and_exact_differential_forms dbr:Einstein_summation_convention dbr:Euler–Lagrange_equation dbc:Calculus_of_variations dbr:Binomial_coefficient dbr:Canonical_form dbr:Lagrangian_mechanics dbr:Velocity dbr:Connection_(mathematics) dbr:Euclidean_space dbr:Minimum dbr:Differential_form dbr:Critical_point_(mathematics) dbr:Germany
owl:sameAs
freebase:m.02qdk6n yago-res:Inverse_problem_for_Lagrangian_mechanics n17:4nnwt wikidata:Q6060414
dbp:wikiPageUsesTemplate
dbt:Cite_journal
dbo:abstract
In mathematics, the inverse problem for Lagrangian mechanics is the problem of determining whether a given system of ordinary differential equations can arise as the Euler–Lagrange equations for some Lagrangian function. There has been a great deal of activity in the study of this problem since the early 20th century. A notable advance in this field was a 1941 paper by the American mathematician Jesse Douglas, in which he provided necessary and sufficient conditions for the problem to have a solution; these conditions are now known as the Helmholtz conditions, after the German physicist Hermann von Helmholtz.
gold:hypernym
dbr:Problem
prov:wasDerivedFrom
wikipedia-en:Inverse_problem_for_Lagrangian_mechanics?oldid=1117662491&ns=0
dbo:wikiPageLength
9207
foaf:isPrimaryTopicOf
wikipedia-en:Inverse_problem_for_Lagrangian_mechanics
Subject Item
dbr:Jesse_Douglas
dbo:wikiPageWikiLink
dbr:Inverse_problem_for_Lagrangian_mechanics
Subject Item
dbr:Lagrangian_mechanics
dbo:wikiPageWikiLink
dbr:Inverse_problem_for_Lagrangian_mechanics
Subject Item
dbr:Inverse_problem_for_lagrangian_mechanics
dbo:wikiPageWikiLink
dbr:Inverse_problem_for_Lagrangian_mechanics
dbo:wikiPageRedirects
dbr:Inverse_problem_for_Lagrangian_mechanics
Subject Item
dbr:Helmholtz_conditions
dbo:wikiPageWikiLink
dbr:Inverse_problem_for_Lagrangian_mechanics
dbo:wikiPageRedirects
dbr:Inverse_problem_for_Lagrangian_mechanics
Subject Item
dbr:Douglas'_theorem
dbo:wikiPageWikiLink
dbr:Inverse_problem_for_Lagrangian_mechanics
dbo:wikiPageRedirects
dbr:Inverse_problem_for_Lagrangian_mechanics
Subject Item
dbr:Douglas_theorem
dbo:wikiPageWikiLink
dbr:Inverse_problem_for_Lagrangian_mechanics
dbo:wikiPageRedirects
dbr:Inverse_problem_for_Lagrangian_mechanics
Subject Item
dbr:Helmholtz_condition
dbo:wikiPageWikiLink
dbr:Inverse_problem_for_Lagrangian_mechanics
dbo:wikiPageRedirects
dbr:Inverse_problem_for_Lagrangian_mechanics
Subject Item
wikipedia-en:Inverse_problem_for_Lagrangian_mechanics
foaf:primaryTopic
dbr:Inverse_problem_for_Lagrangian_mechanics