This HTML5 document contains 34 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n9https://global.dbpedia.org/id/
n15https://web.archive.org/web/20160303235716/http:/www.projecteuclid.org/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
dbpedia-svhttp://sv.dbpedia.org/resource/
freebasehttp://rdf.freebase.com/ns/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
wikipedia-enhttp://en.wikipedia.org/wiki/
dbphttp://dbpedia.org/property/
dbchttp://dbpedia.org/resource/Category:
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Convexoid_operator
rdfs:label
Konvexoidoperator Convexoid operator
rdfs:comment
Inom matematiken är en konvexoidoperator en linjär operator T på ett komplext Hilbertrum H så att det slutna höljet av dess är lika med det konvexa höljet av dess spektrum. In mathematics, especially operator theory, a convexoid operator is a bounded linear operator T on a complex Hilbert space H such that the closure of the numerical range coincides with the convex hull of its spectrum. An example of such an operator is a normal operator (or some of its generalization). A closely related operator is a spectraloid operator: an operator whose spectral radius coincides with its numerical radius. In fact, an operator T is convexoid if and only if is spectraloid for every complex number .
dcterms:subject
dbc:Operator_theory
dbo:wikiPageID
21498815
dbo:wikiPageRevisionID
905485397
dbo:wikiPageWikiLink
dbr:Spectraloid_operator dbr:Hilbert_space dbr:Numerical_range dbr:Operator_theory dbr:Spectrum_(functional_analysis) dbr:Linear_operator dbr:Bounded_operator dbr:Normal_operator dbr:Spectral_radius dbr:Convex_hull dbr:Aluthge_transform dbr:Mathematics dbc:Operator_theory dbr:Numerical_radius
dbo:wikiPageExternalLink
n15:DPubS%3Fservice=UI&version=1.0&verb=Display&handle=euclid.pja%2F1195526397
owl:sameAs
wikidata:Q5166527 n9:4iKQc freebase:m.05h3x7z dbpedia-sv:Konvexoidoperator
dbp:wikiPageUsesTemplate
dbt:Mathanalysis-stub
dbo:abstract
Inom matematiken är en konvexoidoperator en linjär operator T på ett komplext Hilbertrum H så att det slutna höljet av dess är lika med det konvexa höljet av dess spektrum. In mathematics, especially operator theory, a convexoid operator is a bounded linear operator T on a complex Hilbert space H such that the closure of the numerical range coincides with the convex hull of its spectrum. An example of such an operator is a normal operator (or some of its generalization). A closely related operator is a spectraloid operator: an operator whose spectral radius coincides with its numerical radius. In fact, an operator T is convexoid if and only if is spectraloid for every complex number .
prov:wasDerivedFrom
wikipedia-en:Convexoid_operator?oldid=905485397&ns=0
dbo:wikiPageLength
1132
foaf:isPrimaryTopicOf
wikipedia-en:Convexoid_operator
Subject Item
dbr:Hyponormal_operator
dbo:wikiPageWikiLink
dbr:Convexoid_operator
Subject Item
wikipedia-en:Convexoid_operator
foaf:primaryTopic
dbr:Convexoid_operator