This HTML5 document contains 64 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
yago-reshttp://yago-knowledge.org/resource/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n16https://global.dbpedia.org/id/
yagohttp://dbpedia.org/class/yago/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
wikipedia-enhttp://en.wikipedia.org/wiki/
dbchttp://dbpedia.org/resource/Category:
provhttp://www.w3.org/ns/prov#
dbphttp://dbpedia.org/property/
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:List_of_conjectures
dbo:wikiPageWikiLink
dbr:Arithmetic_surface
Subject Item
dbr:Arakelov_theory
dbo:wikiPageWikiLink
dbr:Arithmetic_surface
Subject Item
dbr:Arithmetic_Surface
dbo:wikiPageWikiLink
dbr:Arithmetic_surface
dbo:wikiPageRedirects
dbr:Arithmetic_surface
Subject Item
dbr:Christopher_Deninger
dbo:wikiPageWikiLink
dbr:Arithmetic_surface
Subject Item
dbr:Arithmetic_Fuchsian_group
dbo:wikiPageWikiLink
dbr:Arithmetic_surface
Subject Item
dbr:Arithmetic_surface
rdf:type
yago:PhysicalEntity100001930 yago:Object100002684 yago:Surface104362025 yago:WikicatSurfaces yago:Whole100003553 yago:Artifact100021939
rdfs:label
Arithmetic surface
rdfs:comment
In mathematics, an arithmetic surface over a Dedekind domain R with fraction field is a geometric object having one conventional dimension, and one other dimension provided by the infinitude of the primes. When R is the ring of integers Z, this intuition depends on the prime ideal spectrum Spec(Z) being seen as analogous to a line. Arithmetic surfaces arise naturally in diophantine geometry, when an algebraic curve defined over K is thought of as having reductions over the fields R/P, where P is a prime ideal of R, for almost all P; and are helpful in specifying what should happen about the process of reducing to R/P when the most naive way fails to make sense.
dcterms:subject
dbc:Surfaces dbc:Diophantine_geometry
dbo:wikiPageID
31776898
dbo:wikiPageRevisionID
878177786
dbo:wikiPageWikiLink
dbr:Glossary_of_scheme_theory dbr:Springer-Verlag dbr:Elliptic_fibration dbr:Excellent_ring dbr:Generic_point dbr:Arakelov_theory dbr:Algebraic_variety dbr:Residue_field dbr:Field_of_fractions dbr:Ring_of_integers dbr:Projective_line dbr:Graduate_Texts_in_Mathematics dbr:Finite_morphism dbr:Oxford_University_Press dbr:Néron_model dbr:Dedekind_domain dbr:Almost_all dbr:Prime_ideal_spectrum dbr:Scheme_(mathematics) dbr:Global_field dbr:Divisor_(algebraic_geometry) dbr:Singular_point_of_an_algebraic_variety dbr:Glossary_of_arithmetic_and_Diophantine_geometry dbr:Diophantine_geometry dbr:Infinitude_of_the_primes dbr:Cambridge_University_Press dbr:Elliptic_curve dbr:Archimedean_absolute_value dbr:Irreducible_component dbr:Flat_morphism dbr:Algebraic_curve dbr:Connectedness dbc:Surfaces dbc:Diophantine_geometry
owl:sameAs
yago-res:Arithmetic_surface wikidata:Q4791131 n16:4SjK2 freebase:m.0gvqzp2
dbp:wikiPageUsesTemplate
dbt:Reflist dbt:Cite_book
dbo:abstract
In mathematics, an arithmetic surface over a Dedekind domain R with fraction field is a geometric object having one conventional dimension, and one other dimension provided by the infinitude of the primes. When R is the ring of integers Z, this intuition depends on the prime ideal spectrum Spec(Z) being seen as analogous to a line. Arithmetic surfaces arise naturally in diophantine geometry, when an algebraic curve defined over K is thought of as having reductions over the fields R/P, where P is a prime ideal of R, for almost all P; and are helpful in specifying what should happen about the process of reducing to R/P when the most naive way fails to make sense. Such an object can be defined more formally as an R-scheme with a non-singular, connected projective curve for a generic fiber and unions of curves (possibly reducible, singular, non-reduced ) over the appropriate residue field for special fibers.
prov:wasDerivedFrom
wikipedia-en:Arithmetic_surface?oldid=878177786&ns=0
dbo:wikiPageLength
8614
foaf:isPrimaryTopicOf
wikipedia-en:Arithmetic_surface
Subject Item
dbr:Scheme_(mathematics)
dbo:wikiPageWikiLink
dbr:Arithmetic_surface
Subject Item
wikipedia-en:Arithmetic_surface
foaf:primaryTopic
dbr:Arithmetic_surface