About: Toy theorem

An Entity of Type: work, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In mathematics, a toy theorem is a simplified instance (special case) of a more general theorem, which can be useful in providing a handy representation of the general theorem, or a framework for proving the general theorem. One way of obtaining a toy theorem is by introducing some simplifying assumptions in a theorem. In many cases, a toy theorem is used to illustrate the claim of a theorem, while in other cases, studying the proofs of a toy theorem (derived from a non-trivial theorem) can provide insight that would be hard to obtain otherwise.

Property Value
dbo:abstract
  • En matematiko, luda teoremo estas simpligita versio de iu pli ĝenerala teoremo. Luda teoremo estas kutime ricevata per iu plisimpligo de supozoj de la fonta teoremo. Kutime, luda teoremo estas uzata al ilustri la plenan teoremo. Povas ankaŭ esti utile studi pruvojn de luda teoremo derivitajn de pruvoj de ne-bagatela teoremo. Ludaj teoremoj povas ankaŭ havas klerigan valoron. Post prezento de la plena teoremo kiu havas alte ne-bagatelan pruvon, oni povas kiel iu montrilo de tio ke la teoremo reale veras, doni pli simplan pruvon de luda versio de la teoremo. Ekzemple, luda teoremo de la estas ricevita per konsidero de la okazo. En ĉi tiu okazo, la fiksa punkta teoremo de Brouwer preskaŭ senpere sekvas el la . (eo)
  • In mathematics, a toy theorem is a simplified instance (special case) of a more general theorem, which can be useful in providing a handy representation of the general theorem, or a framework for proving the general theorem. One way of obtaining a toy theorem is by introducing some simplifying assumptions in a theorem. In many cases, a toy theorem is used to illustrate the claim of a theorem, while in other cases, studying the proofs of a toy theorem (derived from a non-trivial theorem) can provide insight that would be hard to obtain otherwise. Toy theorems can also have educational value as well. For example, after presenting a theorem (with, say, a highly non-trivial proof), one can sometimes give some assurance that the theorem really holds, by proving a toy version of the theorem. (en)
dbo:wikiPageID
  • 1458024 (xsd:integer)
dbo:wikiPageLength
  • 1746 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1053404788 (xsd:integer)
dbo:wikiPageWikiLink
dbp:id
  • 4684 (xsd:integer)
dbp:title
  • toy theorem (en)
dbp:wikiPageUsesTemplate
dcterms:subject
gold:hypernym
rdf:type
rdfs:comment
  • En matematiko, luda teoremo estas simpligita versio de iu pli ĝenerala teoremo. Luda teoremo estas kutime ricevata per iu plisimpligo de supozoj de la fonta teoremo. Kutime, luda teoremo estas uzata al ilustri la plenan teoremo. Povas ankaŭ esti utile studi pruvojn de luda teoremo derivitajn de pruvoj de ne-bagatela teoremo. Ludaj teoremoj povas ankaŭ havas klerigan valoron. Post prezento de la plena teoremo kiu havas alte ne-bagatelan pruvon, oni povas kiel iu montrilo de tio ke la teoremo reale veras, doni pli simplan pruvon de luda versio de la teoremo. (eo)
  • In mathematics, a toy theorem is a simplified instance (special case) of a more general theorem, which can be useful in providing a handy representation of the general theorem, or a framework for proving the general theorem. One way of obtaining a toy theorem is by introducing some simplifying assumptions in a theorem. In many cases, a toy theorem is used to illustrate the claim of a theorem, while in other cases, studying the proofs of a toy theorem (derived from a non-trivial theorem) can provide insight that would be hard to obtain otherwise. (en)
rdfs:label
  • Luda teoremo (eo)
  • Toy theorem (en)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License