An Entity of Type: topical concept, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In mathematics of stochastic systems, the Runge–Kutta method is a technique for the approximate numerical solution of a stochastic differential equation. It is a generalisation of the Runge–Kutta method for ordinary differential equations to stochastic differential equations (SDEs). Importantly, the method does not involve knowing derivatives of the coefficient functions in the SDEs.

Property Value
dbo:abstract
  • In mathematics of stochastic systems, the Runge–Kutta method is a technique for the approximate numerical solution of a stochastic differential equation. It is a generalisation of the Runge–Kutta method for ordinary differential equations to stochastic differential equations (SDEs). Importantly, the method does not involve knowing derivatives of the coefficient functions in the SDEs. (en)
  • En mathématiques des systèmes stochastiques, la méthode Runge – Kutta est une technique de résolution numérique approchée d'une équation différentielle stochastique. Il s'agit d'une généralisation de la méthode de Runge – Kutta pour les équations différentielles ordinaires aux équations différentielles stochastiques (EDS). Point fort de la méthode, il n'est pas nécessaire de connaître les dérivées des fonctions de coefficients dans les EDS. (fr)
dbo:wikiPageID
  • 7139336 (xsd:integer)
dbo:wikiPageLength
  • 7155 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1117711282 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
gold:hypernym
rdf:type
rdfs:comment
  • In mathematics of stochastic systems, the Runge–Kutta method is a technique for the approximate numerical solution of a stochastic differential equation. It is a generalisation of the Runge–Kutta method for ordinary differential equations to stochastic differential equations (SDEs). Importantly, the method does not involve knowing derivatives of the coefficient functions in the SDEs. (en)
  • En mathématiques des systèmes stochastiques, la méthode Runge – Kutta est une technique de résolution numérique approchée d'une équation différentielle stochastique. Il s'agit d'une généralisation de la méthode de Runge – Kutta pour les équations différentielles ordinaires aux équations différentielles stochastiques (EDS). Point fort de la méthode, il n'est pas nécessaire de connaître les dérivées des fonctions de coefficients dans les EDS. (fr)
rdfs:label
  • Méthode de Runge–Kutta pour les EDS (fr)
  • Runge–Kutta method (SDE) (en)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License