An Entity of Type: Abstraction100002137, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In the mathematical field of Lie theory, the radical of a Lie algebra is the largest solvable ideal of The radical, denoted by , fits into the exact sequence . where is semisimple. When the ground field has characteristic zero and has finite dimension, Levi's theorem states that this exact sequence splits; i.e., there exists a (necessarily semisimple) subalgebra of that is isomorphic to the semisimple quotient via the restriction of the quotient map A similar notion is a Borel subalgebra, which is a (not necessarily unique) maximal solvable subalgebra.

Property Value
dbo:abstract
  • En la teoría matemática de álgebras de Lie, el radical de un álgebra de Lie es el mayor soluble de ​ El radical, denotado como , se ajusta a la sucesión exacta donde es un álgebra de Lie semisimple. Cuando el cuerpo base tiene característica cero y tiene dimensión finita, el teorema de Levi afirma que esta sucesión exacta es divisible; es decir, existe una subálgebra (necesariamentem semisimple) de que es isomorfa al cociente semisimple a través de la restricción del mapa del cociente . Una noción similar es la de , que es una subálgebra (no necesariamente única) maximalmente soluble. (es)
  • In the mathematical field of Lie theory, the radical of a Lie algebra is the largest solvable ideal of The radical, denoted by , fits into the exact sequence . where is semisimple. When the ground field has characteristic zero and has finite dimension, Levi's theorem states that this exact sequence splits; i.e., there exists a (necessarily semisimple) subalgebra of that is isomorphic to the semisimple quotient via the restriction of the quotient map A similar notion is a Borel subalgebra, which is a (not necessarily unique) maximal solvable subalgebra. (en)
  • 리 군론에서 리 대수 근기(Lie代數根基, 영어: Lie algebra radical)는 리 대수의 최대 가해 아이디얼이다. (ko)
dbo:wikiPageID
  • 11484689 (xsd:integer)
dbo:wikiPageLength
  • 2817 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1112867796 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
rdf:type
rdfs:comment
  • En la teoría matemática de álgebras de Lie, el radical de un álgebra de Lie es el mayor soluble de ​ El radical, denotado como , se ajusta a la sucesión exacta donde es un álgebra de Lie semisimple. Cuando el cuerpo base tiene característica cero y tiene dimensión finita, el teorema de Levi afirma que esta sucesión exacta es divisible; es decir, existe una subálgebra (necesariamentem semisimple) de que es isomorfa al cociente semisimple a través de la restricción del mapa del cociente . Una noción similar es la de , que es una subálgebra (no necesariamente única) maximalmente soluble. (es)
  • In the mathematical field of Lie theory, the radical of a Lie algebra is the largest solvable ideal of The radical, denoted by , fits into the exact sequence . where is semisimple. When the ground field has characteristic zero and has finite dimension, Levi's theorem states that this exact sequence splits; i.e., there exists a (necessarily semisimple) subalgebra of that is isomorphic to the semisimple quotient via the restriction of the quotient map A similar notion is a Borel subalgebra, which is a (not necessarily unique) maximal solvable subalgebra. (en)
  • 리 군론에서 리 대수 근기(Lie代數根基, 영어: Lie algebra radical)는 리 대수의 최대 가해 아이디얼이다. (ko)
rdfs:label
  • Radical de un álgebra de Lie (es)
  • 리 대수 근기 (ko)
  • Radical of a Lie algebra (en)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License